Lectures on the Foundations of Mathematics, Cambridge 1939


Ludwig Wittgenstein - 1989
    A lecture class taught by Wittgenstein, however, hardly resembled a lecture. He sat on a chair in the middle of the room, with some of the class sitting in chairs, some on the floor. He never used notes. He paused frequently, sometimes for several minutes, while he puzzled out a problem. He often asked his listeners questions and reacted to their replies. Many meetings were largely conversation. These lectures were attended by, among others, D. A. T. Gasking, J. N. Findlay, Stephen Toulmin, Alan Turing, G. H. von Wright, R. G. Bosanquet, Norman Malcolm, Rush Rhees, and Yorick Smythies. Notes taken by these last four are the basis for the thirty-one lectures in this book. The lectures covered such topics as the nature of mathematics, the distinctions between mathematical and everyday languages, the truth of mathematical propositions, consistency and contradiction in formal systems, the logicism of Frege and Russell, Platonism, identity, negation, and necessary truth. The mathematical examples used are nearly always elementary.

Introduction to Mathematical Philosophy


Bertrand Russell - 1918
    In it, Russell offers a nontechnical, undogmatic account of his philosophical criticism as it relates to arithmetic and logic. Rather than an exhaustive treatment, however, the influential philosopher and mathematician focuses on certain issues of mathematical logic that, to his mind, invalidated much traditional and contemporary philosophy.In dealing with such topics as number, order, relations, limits and continuity, propositional functions, descriptions, and classes, Russell writes in a clear, accessible manner, requiring neither a knowledge of mathematics nor an aptitude for mathematical symbolism. The result is a thought-provoking excursion into the fascinating realm where mathematics and philosophy meet — a philosophical classic that will be welcomed by any thinking person interested in this crucial area of modern thought.

On Formally Undecidable Propositions of Principia Mathematica and Related Systems


Kurt Gödel - 1992
    Kurt Giidel maintained, and offered detailed proof, that in any arithmetic system, even in elementary parts of arithmetic, there are propositions which cannot be proved or disproved within the system. It is thus uncertain that the basic axioms of arithmetic will not give rise to contradictions. The repercussions of this discovery are still being felt and debated in 20th-century mathematics.The present volume reprints the first English translation of Giidel's far-reaching work. Not only does it make the argument more intelligible, but the introduction contributed by Professor R. B. Braithwaite (Cambridge University}, an excellent work of scholarship in its own right, illuminates it by paraphrasing the major part of the argument.This Dover edition thus makes widely available a superb edition of a classic work of original thought, one that will be of profound interest to mathematicians, logicians and anyone interested in the history of attempts to establish axioms that would provide a rigorous basis for all mathematics. Translated by B. Meltzer, University of Edinburgh. Preface. Introduction by R. B. Braithwaite.

Thinking about Mathematics: The Philosophy of Mathematics


Stewart Shapiro - 2000
    Part I describes questions and issues about mathematics that have motivated philosophers since the beginning of intellectual history. Part II is an historical survey, discussing the role of mathematics in the thought of such philosophers as Plato, Aristotle, Kant, and Mill. Part III covers the three major positions held throughout the twentieth century: the idea that mathematics is logic (logicism), the view that the essence of mathematics is the rule-governed manipulation of characters (formalism), and a revisionist philosophy that focuses on the mental activity of mathematics (intuitionism). Finally, Part IV brings the reader up-to-date with a look at contemporary developments within the discipline.This sweeping introductory guide to the philosophy of mathematics makes these fascinating concepts accessible to those with little background in either mathematics or philosophy.

My Brain is Open: The Mathematical Journeys of Paul Erdős


Bruce Schechter - 1998
    Hungarian-born Erdős believed that the meaning of life was to prove and conjecture. His work in the United States and all over the world has earned him the titles of the century's leading number theorist and the most prolific mathematician who ever lived. Erdős's important work has proved pivotal to the development of computer science, and his unique personality makes him an unforgettable character in the world of mathematics. Incapable of the smallest of household tasks and having no permanent home or job, he was sustained by the generosity of colleagues and by his own belief in the beauty of numbers. Witty and filled with the sort of mathematical puzzles that intrigued Erdős and continue to fascinate mathematicians today, My Brain Is Open is the story of this strange genius and a journey in his footsteps through the world of mathematics, where universal truths await discovery like hidden treasures and where brilliant proofs are poetry.

Does God Play Dice?: The New Mathematics of Chaos


Ian Stewart - 1989
    It also incorporates new information regarding the solar system and an account of complexity theory. This witty, lucid and engaging book makes the complex mathematics of chaos accessible and entertaining. Presents complex mathematics in an accessible style. Includes three new chapters on prediction in chaotic systems, control of chaotic systems, and on the concept of chaos. Provides a discussion of complexity theory.

Gödel's Theorem: An Incomplete Guide to Its Use and Abuse


Torkel Franzén - 2005
    With exceptional clarity, Franz n gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of "Logical Dilemmas: The Life and Work of Kurt G del

Dialogues on Mathematics


Alfréd Rényi - 1967
    

I Want to Be a Mathematician: An Automathography


Paul R. Halmos - 1985
    The main message i absorbed from it was a set of conditions required for success in mathematics: talent, yes; single-mindedness, almost as obvious; sense of humour, essential when the going gets tough; and love, yes that is the right word - you must love mathematics, and that means all the ingredients, passion, pain and loyalty." The Mathematical Gazette#1"The book is written in a very personal, but plain and honest way, result of reflected experience and mature self-assessment of a wise man. It avoids palliation as well as exaggerated modesty.- It should be a document for history and sociology of science." (R. Fischer) Zentralblatt für Mathematik#2

Footballistics


James Coventry - 2018
    The nature of football continually changes, which means its analysis must also keep pace. This book is for students, thinkers, and theorists of the game.'Ted Hopkins - Carlton premiership player, author, and co-founder of Champion Data. Australian Rules football has been described as the most data-rich sport on Earth. Every time and everywhere an AFL side takes to the field, it is shadowed by an army of statisticians and number crunchers. The information they gather has become the sport's new language and currency. ABC journalist James Coventry, author of the acclaimed Time and Space, has joined forces with a group of razor-sharp analysts to decipher the data, and to use it to question some of football's long-held truisms. Do umpires really favour the home side? Has goal kicking accuracy deteriorated? Is Geelong the true master of the draft? Are blonds unfairly favoured in Brownlow medal voting? And are Victorians the most passionate fans? Through a blend of entertaining storytelling and expert analysis, this book will answer more questions about footy than you ever thought to ask. Praise for Time and Space:'Brilliant, masterful' - The Guardian'Arguably one of the most important books yet written on Australian Rules football.' - Inside History'Should find its way into the hands of every coach.' - AFL Record

Impossibility: The Limits of Science and the Science of Limits


John D. Barrow - 1998
    Astronomer John Barrow takes an intriguing look at the limits of science, who argues that there are things that are ultimately unknowable, undoable, or unreachable.

The Philosophy of Space and Time


Hans Reichenbach - 1957
    A brilliantly clear and penetrating exposition of developments in physical science and mathematics brought about by the advent of non-Euclidean geometries, including in-depth coverage of the foundations of geometry, the theory of time, Einstein's theory of relativity and its consequences, other key topics.

Philosophical Devices: Proofs, Probabilities, Possibilities, and Sets


David Papineau - 2012
    Notions like denumerability, modal scope distinction, Bayesian conditionalization, and logical completeness are usually only elucidated deep within difficultspecialist texts. By offering simple explanations that by-pass much irrelevant and boring detail, Philosophical Devices is able to cover a wealth of material that is normally only available to specialists.The book contains four sections, each of three chapters. The first section is about sets and numbers, starting with the membership relation and ending with the generalized continuum hypothesis. The second is about analyticity, a prioricity, and necessity. The third is about probability, outliningthe difference between objective and subjective probability and exploring aspects of conditionalization and correlation. The fourth deals with metalogic, focusing on the contrast between syntax and semantics, and finishing with a sketch of Godel's theorem.Philosophical Devices will be useful for university students who have got past the foothills of philosophy and are starting to read more widely, but it does not assume any prior expertise. All the issues discussed are intrinsically interesting, and often downright fascinating. It can be read withpleasure and profit by anybody who is curious about the technical infrastructure of contemporary philosophy.

Proofs from the Book, 3e


Martin Aigner - 1998
    Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."

Calculus: An Intuitive and Physical Approach


Morris Kline - 1967
    In-depth explorations of the derivative, the differentiation and integration of the powers of x, and theorems on differentiation and antidifferentiation lead to a definition of the chain rule and examinations of trigonometric functions, logarithmic and exponential functions, techniques of integration, polar coordinates, much more. Clear-cut explanations, numerous drills, illustrative examples. 1967 edition. Solution guide available upon request.