Basketball on Paper: Rules and Tools for Performance Analysis
Dean Oliver - 2003
Basketball on Paper doesn’t diagram plays or explain how players get in shape, but instead demonstrates how to interpret player and team performance. Dean Oliver highlights general strategies for teams when they’re winning or losing and what aspects should be the focus in either situation. He describes and quantifies the jobs of team leaders and role players, then discusses the interactions between players and how to achieve the best fit. Oliver conceptualizes the meaning of teamwork and how to quantify the value of different types of players working together. He examines historically successful NBA teams and identifies what made them so successful: individual talent, a system of putting players together, or good coaching. Oliver then uses these statistical tools and case studies to evaluate the best players in history, such as Magic Johnson, Wilt Chamberlain, Bill Russell, and Charles Barkley and how they contributed to their teams’ success. He does the same for some of the NBA’s "oddball" players-Manute Bol, Muggsy Bogues, and Dennis Rodman and for the WNBA’s top players. Basketball on Paper is unique in its incorporation of business and analytical concepts within the context of basketball to measure the value of players in a cooperative setting. Whether you’re looking for strategies or new ideas to throw out while watching the ballgame at a sports bar, Dean Oliver’sBasketball on Paper will give you amazing new insights into teamwork, coaching, and success.
Data Structures and Algorithm Analysis in C
Mark Allen Weiss - 1992
The book's conceptual presentation focuses on ADTs and the analysis of algorithms for efficiency, with a particular concentration on performance and running time. The second edition contains a new chapter that examines advanced data structures such as red black trees, top down splay trees, treaps, k-d trees, and pairing heaps among others. All code examples now conform to ANSI C and coverage of the formal proofs underpinning several key data structures has been strengthened.
One Size Doesn't Fit All: Bringing Out the Best in Any Size Church
Gary L. McIntosh - 1999
A systematic exploration of small, medium, and large churches, their distinct personalities, and their place in God's kingdom.
The Sabermetric Revolution: Assessing the Growth of Analytics in Baseball
Benjamin Baumer - 2013
Rocketed to popularity by the 2003 bestseller Moneyball and the film of the same name, the use of sabermetrics to analyze player performance has appeared to be a David to the Goliath of systemically advantaged richer teams that could be toppled only by creative statistical analysis. The story has been so compelling that, over the past decade, team after team has integrated statistical analysis into its front office. But how accurately can crunching numbers quantify a player's ability? Do sabermetrics truly level the playing field for financially disadvantaged teams? How much of the baseball analytic trend is fad and how much fact?The Sabermetric Revolution sets the record straight on the role of analytics in baseball. Former Mets sabermetrician Benjamin Baumer and leading sports economist Andrew Zimbalist correct common misinterpretations and develop new methods to assess the effectiveness of sabermetrics on team performance. Tracing the growth of front office dependence on sabermetrics and the breadth of its use today, they explore how Major League Baseball and the field of sports analytics have changed since the 2002 season. Their conclusion is optimistic, but the authors also caution that sabermetric insights will be more difficult to come by in the future. The Sabermetric Revolution offers more than a fascinating case study of the use of statistics by general managers and front office executives: for fans and fantasy leagues, this book will provide an accessible primer on the real math behind moneyball as well as new insight into the changing business of baseball.
Geek Logik: 50 Foolproof Equations for Everyday Life
Garth Sundem - 2006
Call it the algebra oracle: By plugging in the right variables, GEEK LOGIK answers life’s most persistent questions. It covers Dating and Romance, Career and Finance, and everyday decisions like Should I get a tattoo? Can I still wear tight jeans? Is it time to see a therapist? How many beers should I have at the company picnic? How does it work? Take a simple issue that comes up once or twice a week: Should I call in sick? Fill in the variables honestly, such as D for doctor’s note (enter 1 for “no,†10 for “yes,†and 5 for “yes, but it’s a forgeryâ€), R for importance of job (1-10, with 10 being “personally responsible for Earth’s orbit around Sunâ€), Fj for how much fun you have at work (1-10, with 10 being “personal trainer for underwear modelsâ€), N for how much you need the money (1-10, with 10 being “I owe the mobâ€), then do the math, and voilà —if the product, Hooky, is greater than 1, enjoy your very own Ferris Bueller’s Day Off. Includes a pocket calculator so that prospective geeks can immediately solve the equation on the back cover: Should I buy this book?
Turing's Cathedral: The Origins of the Digital Universe
George Dyson - 2012
In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time. How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.
Discrete Mathematical Structures with Applications to Computer Science
Jean-Paul Tremblay - 1975
Mathematical Elements for Computer Graphics
David F. Rogers - 1976
It presents in a unified manner an introduction to the mathematical theory underlying computer graphic applications. It covers topics of keen interest to students in engineering and computer science: transformations, projections, 2-D and 3-D curve definition schemes, and surface definitions. It also includes techniques, such as B-splines, which are incorporated as part of the software in advanced engineering workstations. A basic knowledge of vector and matrix algebra and calculus is required.
E=mc²: A Biography of the World's Most Famous Equation
David Bodanis - 2000
Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee
In Praise of Mathematics
Alain Badiou - 2015
Far from the thankless, pointless exercises they are often thought to be, mathematics and logic are indispensable guides to ridding ourselves of dominant opinions and making possible an access to truths, or to a human experience of the utmost value. That is why mathematics may well be the shortest path to the true life, which, when it exists, is characterized by an incomparable happiness.
The Feynman Lectures on Physics Vol 1
Richard P. Feynman - 1963
This edition, which was prepared by Kip S. Thorne (Feynman Professor of Theoretical Physics at California Institute of Technology), fully incorporates all the errata and corrections gathered (but never used in a published edition) by Feynman.
Hexaflexagons and Other Mathematical Diversions
Martin Gardner - 1959
He has selected a group of diversions which are not only entertaining but mathematically meaningful as well. The result is a work which is rewarding on almost every level of mathematical achievement."—Miriam Hecht, Iscripta Mathematica
1089 and All That: A Journey into Mathematics
David Acheson - 2002
From very simple beginnings he takes us on a thrilling journey to some deep mathematical ideas. On the way, via Kepler and Newton, he explains what calculus really means, gives a brief history of pi, and even takes us to chaos theory and imaginary numbers. Every short chapter is carefully crafted to ensure that no one will get lost on the journey. Packed with puzzles and illustrated by world famous cartoonists, this is one of the most readable and imaginative books on mathematics ever written.
The Trachtenberg Speed System of Basic Mathematics
Jakow Trachtenberg - 1960
Described as the 'shorthand of mathematics', the Trachtenberg system only requires the ability to count from one to eleven. Using a series of simplified keys it allows anyone to master calculations, giving greater speed, ease in handling numbers and increased accuracy.Jakow Trachtenberg believed that everyone is born with phenomenal abilities to calculate. He devised a set of rules that allows every child to make multiplication, division, addition, subtraction and square-root calculations with unerring accuracy and at remarkable speed. It is the perfect way to gain confidence with numbers.
The Cartoon Introduction to Statistics
Grady Klein - 2013
Employing an irresistible cast of dragon-riding Vikings, lizard-throwing giants, and feuding aliens, the renowned illustrator Grady Klein and the award-winning statistician Alan Dabney teach you how to collect reliable data, make confident statements based on limited information, and judge the usefulness of polls and the other numbers that you're bombarded with every day. If you want to go beyond the basics, they've created the ultimate resource: "The Math Cave," where they reveal the more advanced formulas and concepts.Timely, authoritative, and hilarious, The Cartoon Introduction to Statistics is an essential guide for anyone who wants to better navigate our data-driven world.