Book picks similar to
What Computers Still Can't Do: A Critique of Artificial Reason by Hubert L. Dreyfus
philosophy
science
computer-science
non-fiction
The Inmates Are Running the Asylum: Why High Tech Products Drive Us Crazy and How to Restore the Sanity
Alan Cooper - 1999
Cooper details many of these meta functions to explain his central thesis: programmers need to seriously re-evaluate the many user-hostile concepts deeply embedded within the software development process. Rather than provide users with a straightforward set of options, programmers often pile on the bells and whistles and ignore or de-prioritise lingering bugs. For the average user, increased functionality is a great burden, adding to the recurrent chorus that plays: "computers are hard, mysterious, unwieldy things." (An average user, Cooper asserts, who doesn't think that way or who has memorised all the esoteric commands and now lords it over others, has simply been desensitised by too many years of badly designed software.) Cooper's writing style is often overblown, with a pantheon of cutesy terminology (i.e. "dancing bearware") and insider back-patting. (When presenting software to Bill Gates, he reports that Gates replied: "How did you do that?" to which he writes: "I love stumping Bill!") More seriously, he is also unable to see beyond software development's importance--a sin he accuses programmers of throughout the book. Even with that in mind, the central questions Cooper asks are too important to ignore: Are we making users happier? Are we improving the process by which they get work done? Are we making their work hours more effective? Cooper looks to programmers, business managers and what he calls "interaction designers" to question current assumptions and mindsets. Plainly, he asserts that the goal of computer usage should be "not to make anyone feel stupid." Our distance from that goal reinforces the need to rethink entrenched priorities in software planning. -- Jennifer Buckendorff, Amazon.com
Hacking: The Art of Exploitation
Jon Erickson - 2003
This book explains the technical aspects of hacking, including stack based overflows, heap based overflows, string exploits, return-into-libc, shellcode, and cryptographic attacks on 802.11b.
The User Illusion: Cutting Consciousness Down to Size
Tor Nørretranders - 1991
Although we are unaware of it, our brains sift through and discard billions of pieces of data in order to allow us to understand the world around us. In fact, most of what we call thought is actually the unconscious discarding of information. What our consciousness rejects constitutes the most valuable part of ourselves, the "Me" that the "I" draws on for most of our actions--fluent speech, riding a bicycle, anything involving expertise. No wonder that, in this age of information, so many of us feel empty and dissatisfied. As engaging as it is insightful, this important book encourages us to rely more on what our instincts and our senses tell us so that we can better appreciate the richness of human life.
How to Solve It: A New Aspect of Mathematical Method
George Pólya - 1944
Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.
Computational Thinking
Peter J. Denning - 2019
More recently, "computational thinking" has become part of the K-12 curriculum. But what is computational thinking? This volume in the MIT Press Essential Knowledge series offers an accessible overview, tracing a genealogy that begins centuries before digital computers and portraying computational thinking as pioneers of computing have described it.The authors explain that computational thinking (CT) is not a set of concepts for programming; it is a way of thinking that is honed through practice: the mental skills for designing computations to do jobs for us, and for explaining and interpreting the world as a complex of information processes. Mathematically trained experts (known as "computers") who performed complex calculations as teams engaged in CT long before electronic computers. The authors identify six dimensions of today's highly developed CT--methods, machines, computing education, software engineering, computational science, and design--and cover each in a chapter. Along the way, they debunk inflated claims for CT and computation while making clear the power of CT in all its complexity and multiplicity.
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Automate This: How Algorithms Came to Rule Our World
Christopher Steiner - 2012
It used to be that to diagnose an illness, interpret legal documents, analyze foreign policy, or write a newspaper article you needed a human being with specific skills—and maybe an advanced degree or two. These days, high-level tasks are increasingly being handled by algorithms that can do precise work not only with speed but also with nuance. These “bots” started with human programming and logic, but now their reach extends beyond what their creators ever expected. In this fascinating, frightening book, Christopher Steiner tells the story of how algorithms took over—and shows why the “bot revolution” is about to spill into every aspect of our lives, often silently, without our knowledge. The May 2010 “Flash Crash” exposed Wall Street’s reliance on trading bots to the tune of a 998-point market drop and $1 trillion in vanished market value. But that was just the beginning. In Automate This, we meet bots that are driving cars, penning haiku, and writing music mistaken for Bach’s. They listen in on our customer service calls and figure out what Iran would do in the event of a nuclear standoff. There are algorithms that can pick out the most cohesive crew of astronauts for a space mission or identify the next Jeremy Lin. Some can even ingest statistics from baseball games and spit out pitch-perfect sports journalism indistinguishable from that produced by humans. The interaction of man and machine can make our lives easier. But what will the world look like when algorithms control our hospitals, our roads, our culture, and our national security? What happens to businesses when we automate judgment and eliminate human instinct? And what role will be left for doctors, lawyers, writers, truck drivers, and many others? Who knows—maybe there’s a bot learning to do your job this minute.
The Creativity Code: How AI Is Learning to Write, Paint and Think
Marcus du Sautoy - 2019
They can navigate more data than a doctor or lawyer and act with greater precision. For many years we’ve taken solace in the notion that they can’t create. But now that algorithms can learn and adapt, does the future of creativity belong to machines, too?It is hard to imagine a better guide to the bewildering world of artificial intelligence than Marcus du Sautoy, a celebrated Oxford mathematician whose work on symmetry in the ninth dimension has taken him to the vertiginous edge of mathematical understanding. In The Creativity Code he considers what machine learning means for the future of creativity. The Pollockizer can produce drip paintings in the style of Jackson Pollock, Botnik spins off fanciful (if improbable) scenes inspired by J. K. Rowling, and the music-composing algorithm Emmy managed to fool a panel of Bach experts. But do these programs just mimic, or do they have what it takes to create? Du Sautoy argues that to answer this question, we need to understand how the algorithms that drive them work―and this brings him back to his own subject of mathematics, with its puzzles, constraints, and enticing possibilities.While most recent books on AI focus on the future of work, The Creativity Code moves us to the forefront of creative new technologies and offers a more positive and unexpected vision of our future cohabitation with machines. It challenges us to reconsider what it means to be human―and to crack the creativity code.
But How Do It Know? - The Basic Principles of Computers for Everyone
J. Clark Scott - 2009
Its humorous title begins with the punch line of a classic joke about someone who is baffled by technology. It was written by a 40-year computer veteran who wants to take the mystery out of computers and allow everyone to gain a true understanding of exactly what computers are, and also what they are not. Years of writing, diagramming, piloting and editing have culminated in one easy to read volume that contains all of the basic principles of computers written so that everyone can understand them. There used to be only two types of book that delved into the insides of computers. The simple ones point out the major parts and describe their functions in broad general terms. Computer Science textbooks eventually tell the whole story, but along the way, they include every detail that an engineer could conceivably ever need to know. Like Momma Bear's porridge, But How Do It Know? is just right, but it is much more than just a happy medium. For the first time, this book thoroughly demonstrates each of the basic principles that have been used in every computer ever built, while at the same time showing the integral role that codes play in everything that computers are able to do. It cuts through all of the electronics and mathematics, and gets right to practical matters. Here is a simple part, see what it does. Connect a few of these together and you get a new part that does another simple thing. After just a few iterations of connecting up simple parts - voilà! - it's a computer. And it is much simpler than anyone ever imagined. But How Do It Know? really explains how computers work. They are far simpler than anyone has ever permitted you to believe. It contains everything you need to know, and nothing you don't need to know. No technical background of any kind is required. The basic principles of computers have not changed one iota since they were invented in the mid 20th century. "Since the day I learned how computers work, it always felt like I knew a giant secret, but couldn't tell anyone," says the author. Now he's taken the time to explain it in such a manner that anyone can have that same moment of enlightenment and thereafter see computers in an entirely new light.
Practical Object Oriented Design in Ruby
Sandi Metz - 2012
The Web is awash in Ruby code that is now virtually impossible to change or extend. This text helps you solve that problem by using powerful real-world object-oriented design techniques, which it thoroughly explains using simple and practical Ruby examples. Sandi Metz has distilled a lifetime of conversations and presentations about object-oriented design into a set of Ruby-focused practices for crafting manageable, extensible, and pleasing code. She shows you how to build new applications that can survive success and repair existing applications that have become impossible to change. Each technique is illustrated with extended examples, all downloadable from the companion Web site, poodr.info. The first title to focus squarely on object-oriented Ruby application design,
Practical Object-Oriented Design in Ruby
will guide you to superior outcomes, whatever your previous Ruby experience. Novice Ruby programmers will find specific rules to live by; intermediate Ruby programmers will find valuable principles they can flexibly interpret and apply; and advanced Ruby programmers will find a common language they can use to lead development and guide their colleagues. This guide will help you Understand how object-oriented programming can help you craft Ruby code that is easier to maintain and upgrade Decide what belongs in a single Ruby class Avoid entangling objects that should be kept separate Define flexible interfaces among objects Reduce programming overhead costs with duck typing Successfully apply inheritance Build objects via composition Design cost-effective tests Solve common problems associated with poorly designed Ruby code
Game Programming Patterns
Robert Nystrom - 2011
Commercial game development expert Robert Nystrom presents an array of general solutions to problems encountered in game development. For example, you'll learn how double-buffering enables a player to perceive smooth and realistic motion, and how the service locator pattern can help you provide access to services such as sound without coupling your code to any particular sound driver or sound hardware. Games have much in common with other software, but also a number of unique constraints. Some of the patterns in this book are well-known in other domains of software development. Other of the patterns are unique to gaming. In either case, Robert Nystrom bridges from the ivory tower world of software architecture to the in-the-trenches reality of hardcore game programming. You'll learn the patterns and the general problems that they solve. You'll come away able to apply powerful and reusable architectural solutions that enable you to produce higher quality games with less effort than before. Applies classic design patterns to game programming. Introduces new patterns specific to game programming. Brings abstract software architecture down to Earth with approachable writing and an emphasis on simple code that shows each pattern in practice. What you'll learn Overcome architectural challenges unique to game programming Apply lessons from the larger software world to games. Tie different parts of a game (graphics, sound, AI) into a cohesive whole. Create elegant and maintainable architecture. Achieve good, low-level performance. Gain insight into professional, game development. Who this book is forGame Programming Patterns is aimed at professional game programmers who, while successful in shipping games, are frustrated at how hard it sometimes is to add and modify features when a game is under development. Game Programming Patterns shows how to apply modern software practices to the problem of game development while still maintaining the blazing-fast performance demanded by hard-core gamers. Game Programming Patterns also appeals to those learning about game programming in their spare time. Hobbyists and aspiring professionals alike will find much to learn in this book about pathfinding, collision detection, and other game-programming problem domains.
Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People
Aditya Y. Bhargava - 2015
The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.
The Search: How Google and Its Rivals Rewrote the Rules of Business and Transformed Our Culture
John Battelle - 2005
In its sweeping survey of the history of Internet search technologies, its gossip about and analysis of Google, and its speculation on the larger cultural implications of a Web-connected world, it will likely receive attention from a variety of businesspeople, technology futurists, journalists, and interested observers of mid-2000s zeitgeist. This ambitious book comes with a strong pedigree. Author John Battelle was a founder of The Industry Standard and then one of the original editors of Wired, two magazines which helped shape our early perceptions of the wild world of the Internet. Battelle clearly drew from his experience and contacts in writing The Search. In addition to the sure-handed historical perspective and easy familiarity with such dot-com stalwarts as AltaVista, Lycos, and Excite, he speckles his narrative with conversational asides from a cast of fascinating characters, such Google's founders, Larry Page and Sergey Brin; Yahoo's, Jerry Yang and David Filo; key executives at Microsoft and different VC firms on the famed Sandhill road; and numerous other insiders, particularly at the company which currently sits atop the search world, Google. The Search is not exactly the corporate history of Google. At the book's outset, Battelle specifically indicates his desire to understand what he calls the cultural anthropology of search, and to analyze search engines' current role as the "database of our intentions"--the repository of humanity's curiosity, exploration, and expressed desires. Interesting though that beginning is, though, Battelle's story really picks up speed when he starts dishing inside scoop on the darling business story of the decade, Google. To Battelle's credit, though, he doesn't stop just with historical retrospective: the final part of his book focuses on the potential future directions of Google and its products' development. In what Battelle himself acknowledges might just be a "digital fantasy train", he describes the possibility that Google will become the centralizing platform for our entire lives and quotes one early employee on the weightiness of Google's potential impact: "Sometimes I feel like I am on a bridge, twenty thousand feet up in the air. If I look down I'm afraid I'll fall. I don't feel like I can think about all the implications." Some will shrug at such words; after all, similar hype has accompanied other technologies and other companies before. Many others, though, will search Battelle's story for meaning--and fast. --Peter Han
Getting Real: The Smarter, Faster, Easier Way to Build a Web Application
37 Signals - 2006
At under 200 pages it's quick reading too. Makes a great airplane book.
Quantum Computing for Everyone
Chris Bernhardt - 2019
In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means.Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement--which, he says, is easier to describe mathematically than verbally--and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as "spooky action at a distance"); and introduces quantum cryptography. He recaps standard topics in classical computing--bits, gates, and logic--and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.