Introduction to Linear Algebra
Gilbert Strang - 1993
Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.
How to read and do proofs
Daniel Solow - 1982
Shows how any proof can be understood as a sequence of techniques. Covers the full range of techniques used in proofs, such as the contrapositive, induction, and proof by contradiction. Explains how to identify which techniques are used and how they are applied in the specific problem. Illustrates how to read written proofs with many step-by-step examples. Includes new, expanded appendices related to discrete mathematics, linear algebra, modern algebra and real analysis.
How Numbers Work: Discover the Strange and Beautiful World of Mathematics (New Scientist Instant Expert)
New Scientist - 2018
No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends.The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the "imaginary" number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it?How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.
Schaum's Outline of Mathematical Economics
Edward T. Dowling - 1992
Students know that Schaum's delivers the goods—in faster learning curves,better test scores,and higher grades!If you don't have a lot of time but want to excel in class,this book helps you: Brush up before tests; Find answers fast; Study quickly and more effectively; Get the big picture without spending hours poring over dull texts Schaum's Outlines give you the information teachers expect you to know in a handy and succinct format—without overwhelming you with unnecessary details. You get a complete overview of the subject—and no distracting minutiae. Plus,you get plenty of practice exercises to test your skill. Compatible with any classroom text,Schaum's lets you study at your own pace and reminds you of all the important facts you need to remember—fast! And Schaum's is so complete it's the perfect tool for preparing for graduate or professional exams! Students of mathematical economics apply complex formulas—a challenging task that even the best students find daunting. But this Schaum's guide demystifies tough problems and gives you plenty of fully worked examples! Chapters include: Review. Economic Applications of Graphs and Equations. The Derivative and the Rules of Differentiation. Uses of the Derivative in Mathematics and Economics. Calculus of Multivariable Functions. Calculus of Multivariable Functions in Economics. Exponential and LogarithmicFunctions. Exponential and Logarithmic Functions in Economics. Differentiation of Exponential and Logarithmic Functions. The Fundamentals of Linear (or Matrix) Algebra. Matrix Inversion. Special Determinants and Matrices and Their Use in Economics. Linear Programming: A Graphic Approach. Linear Programming: The Simplex Algorithm. Linear Programming: The Dual. Integral Calculus: The Indefinite Integral. Integral Calculus: The Definite Integral. Differential Equations. Difference Equations. Second-Order Differential Equations and Difference Equations. The Calculus of Variations
Quantum Computing for Everyone
Chris Bernhardt - 2019
In this book, Chris Bernhardt offers an introduction to quantum computing that is accessible to anyone who is comfortable with high school mathematics. He explains qubits, entanglement, quantum teleportation, quantum algorithms, and other quantum-related topics as clearly as possible for the general reader. Bernhardt, a mathematician himself, simplifies the mathematics as much as he can and provides elementary examples that illustrate both how the math works and what it means.Bernhardt introduces the basic unit of quantum computing, the qubit, and explains how the qubit can be measured; discusses entanglement--which, he says, is easier to describe mathematically than verbally--and what it means when two qubits are entangled (citing Einstein's characterization of what happens when the measurement of one entangled qubit affects the second as "spooky action at a distance"); and introduces quantum cryptography. He recaps standard topics in classical computing--bits, gates, and logic--and describes Edward Fredkin's ingenious billiard ball computer. He defines quantum gates, considers the speed of quantum algorithms, and describes the building of quantum computers. By the end of the book, readers understand that quantum computing and classical computing are not two distinct disciplines, and that quantum computing is the fundamental form of computing. The basic unit of computation is the qubit, not the bit.
Facts and Mysteries in Elementary Particle Physics
Martinus Veltman - 2003
We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the elusive Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed “superbly lucid” by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642).
Musimathics: The Mathematical Foundations of Music, Volume 1
Gareth Loy - 2006
In "Musimathics," Loy teaches us the tune, providing a friendly and spirited tour of the mathematics of music -- a commonsense, self-contained introduction for the nonspecialist reader. It is designed for musicians who find their art increasingly mediated by technology, and for anyone who is interested in the intersection of art and science.In Volume 1, Loy presents the materials of music (notes, intervals, and scales); the physical properties of music (frequency, amplitude, duration, and timbre); the perception of music and sound (how we hear); and music composition. Calling himself "a composer seduced into mathematics," Loy provides answers to foundational questions about the mathematics of music accessibly yet rigorously. The examples given are all practical problems in music and audio.Additional material can be found at http: //www.musimathics.com.
Paradox: The Nine Greatest Enigmas in Physics
Jim Al-Khalili - 2012
A fun and fascinating look at great scientific paradoxes. Throughout history, scientists have come up with theories and ideas that just don't seem to make sense. These we call paradoxes. The paradoxes Al-Khalili offers are drawn chiefly from physics and astronomy and represent those that have stumped some of the finest minds. For example, how can a cat be both dead and alive at the same time? Why will Achilles never beat a tortoise in a race, no matter how fast he runs? And how can a person be ten years older than his twin? With elegant explanations that bring the reader inside the mind of those who've developed them, Al-Khalili helps us to see that, in fact, paradoxes can be solved if seen from the right angle. Just as surely as Al-Khalili narrates the enduring fascination of these classic paradoxes, he reveals their underlying logic. In doing so, he brings to life a select group of the most exciting concepts in human knowledge. Paradox is mind-expanding fun.
Linear Algebra With Applications
Steven J. Leon - 1980
Each chapter contains integrated worked examples and chapter tests. This edition has the ancillary ATLAST computer exercise guide and new MATLAB and Maple guides.
Descartes' Secret Notebook: A True Tale of Mathematics, Mysticism, and the Quest to Understand the Universe
Amir D. Aczel - 2005
His apothegm "Cogito, ergo sum" marked the birth of the mind-body problem, while his creation of so-called Cartesian coordinates have made our physical and intellectual conquest of physical space possible.But Descartes had a mysterious and mystical side, as well. Almost certainly a member of the occult brotherhood of the Rosicrucians, he kept a secret notebook, now lost, most of which was written in code. After Descartes's death, Gottfried Leibniz, inventor of calculus and one of the greatest mathematicians in history, moved to Paris in search of this notebook--and eventually found it in the possession of Claude Clerselier, a friend of Descartes. Leibniz called on Clerselier and was allowed to copy only a couple of pages--which, though written in code, he amazingly deciphered there on the spot. Leibniz's hastily scribbled notes are all we have today of Descartes's notebook, which has disappeared.Why did Descartes keep a secret notebook, and what were its contents? The answers to these questions lead Amir Aczel and the reader on an exciting, swashbuckling journey, and offer a fascinating look at one of the great figures of Western culture.
The Shape of Space: How to Visualize Surfaces and Three-Dimensional Manifolds
Jeffrey R. Weeks - 1985
Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.
1089 and All That: A Journey into Mathematics
David Acheson - 2002
From very simple beginnings he takes us on a thrilling journey to some deep mathematical ideas. On the way, via Kepler and Newton, he explains what calculus really means, gives a brief history of pi, and even takes us to chaos theory and imaginary numbers. Every short chapter is carefully crafted to ensure that no one will get lost on the journey. Packed with puzzles and illustrated by world famous cartoonists, this is one of the most readable and imaginative books on mathematics ever written.
Number Theory
George E. Andrews - 1994
In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..
Solving Mathematical Problems: A Personal Perspective
Terence Tao - 2006
Covering number theory, algebra, analysis, Euclidean geometry, and analytic geometry, Solving Mathematical Problems includes numerous exercises and model solutions throughout. Assuming only a basic level of mathematics, the text is ideal for students of 14 years and above in pure mathematics.
Our Mathematical Universe: My Quest for the Ultimate Nature of Reality
Max Tegmark - 2012
Our Big Bang, our distant future, parallel worlds, the sub-atomic and intergalactic - none of them are what they seem. But there is a way to understand this immense strangeness - mathematics. Seeking an answer to the fundamental puzzle of why our universe seems so mathematical, Tegmark proposes a radical idea: that our physical world not only is described by mathematics, but that it is mathematics. This may offer answers to our deepest questions: How large is reality? What is everything made of? Why is our universe the way it is?Table of ContentsPreface 1 What Is Reality? Not What It Seems • What’s the Ultimate Question? • The Journey Begins Part One: Zooming Out 2 Our Place in Space Cosmic Questions • How Big Is Space? • The Size of Earth • Distance to the Moon • Distance to the Sun and the Planets • Distance to the Stars • Distance to the Galaxies • What Is Space? 3 Our Place in TimeWhere Did Our Solar System Come From? • Where Did theGalaxies Come From? • Where Did the Mysterious MicrowavesCome From? • Where Did the Atoms Come From? 4 Our Universe by NumbersWanted: Precision Cosmology • Precision Microwave-Background Fluctuations • Precision Galaxy Clustering • The Ultimate Map of Our Universe • Where Did Our Big Bang Come From? 5 Our Cosmic Origins What’s Wrong with Our Big Bang? • How Inflation Works • The Gift That Keeps on Giving • Eternal Inflation 6 Welcome to the Multiverse The Level I Multiverse • The Level II Multiverse • Multiverse Halftime Roundup Part Two: Zooming In 7 Cosmic Legos Atomic Legos • Nuclear Legos • Particle-Physics Legos • Mathematical Legos • Photon Legos • Above the Law? • Quanta and Rainbows • Making Waves • Quantum Weirdness • The Collapse of Consensus • The Weirdness Can’t Be Confined • Quantum Confusion 8 The Level III Multiverse The Level III Multiverse • The Illusion of Randomness • Quantum Censorship • The Joys of Getting Scooped • Why Your Brain Isn’t a Quantum Computer • Subject, Object and Environment • Quantum Suicide • Quantum Immortality? • Multiverses Unified • Shifting Views: Many Worlds or Many Words? Part Three: Stepping Back 9 Internal Reality, External Reality and Consensus Reality External Reality and Internal Reality • The Truth, the Whole Truth and Nothing but the Truth • Consensus Reality • Physics: Linking External to Consensus Reality 10 Physical Reality and Mathematical Reality Math, Math Everywhere! • The Mathematical Universe Hypothesis • What Is a Mathematical Structure? 11 Is Time an Illusion? How Can Physical Reality Be Mathematical? • What Are You? • Where Are You? (And What Do You Perceive?) • When Are You? 12 The Level IV Multiverse Why I Believe in the Level IV Multiverse • Exploring the Level IV Multiverse: What’s Out There? • Implications of the Level IV Multiverse • Are We Living in a Simulation? • Relation Between the MUH, the Level IV Multiverse and Other Hypotheses •Testing the Level IV Multiverse 13 Life, Our Universe and Everything How Big Is Our Physical Reality? • The Future of Physics • The Future of Our Universe—How Will It End? • The Future of Life •The Future of You—Are You Insignificant? Acknowledgments Suggestions for Further Reading Index