Book picks similar to
Noncommutative Geometry by Alain Connes
math
science
mathematics
it-wikipedia
The Calculus Gallery: Masterpieces from Newton to Lebesgue
William Dunham - 2004
This book charts its growth and development by sampling from the work of some of its foremost practitioners, beginning with Isaac Newton and Gottfried Wilhelm Leibniz in the late seventeenth century and continuing to Henri Lebesgue at the dawn of the twentieth--mathematicians whose achievements are comparable to those of Bach in music or Shakespeare in literature. William Dunham lucidly presents the definitions, theorems, and proofs. Students of literature read Shakespeare; students of music listen to Bach, he writes. But this tradition of studying the major works of the masters is, if not wholly absent, certainly uncommon in mathematics. This book seeks to redress that situation.Like a great museum, The Calculus Gallery is filled with masterpieces, among which are Bernoulli's early attack upon the harmonic series (1689), Euler's brilliant approximation of pi (1779), Cauchy's classic proof of the fundamental theorem of calculus (1823), Weierstrass's mind-boggling counterexample (1872), and Baire's original category theorem (1899). Collectively, these selections document the evolution of calculus from a powerful but logically chaotic subject into one whose foundations are thorough, rigorous, and unflinching--a story of genius triumphing over some of the toughest, most subtle problems imaginable.Anyone who has studied and enjoyed calculus will discover in these pages the sheer excitement each mathematician must have felt when pushing into the unknown. In touring The Calculus Gallery, we can see how it all came to be.
Graph Theory With Applications To Engineering And Computer Science
Narsingh Deo - 2004
GRAPH THEORY WITH APPLICATIONS TO ENGINEERING AND COMPUTER SCIENCE-PHI-DEO, NARSINGH-1979-EDN-1
Differential Geometry
Erwin Kreyszig - 1991
With problems and solutions. Includes 99 illustrations.
Mathematical Circles: Russian Experience (Mathematical World, Vol. 7)
Dmitri Fomin - 1996
The work is predicated on the idea that studying mathematics can generate the same enthusiasm as playing a team sport - without necessarily being competitive.
A Concise History of Mathematics
Dirk Jan Struik - 1948
Students, researchers, historians, specialists — in short, everyone with an interest in mathematics — will find it engrossing and stimulating.Beginning with the ancient Near East, the author traces the ideas and techniques developed in Egypt, Babylonia, China, and Arabia, looking into such manuscripts as the Egyptian Papyrus Rhind, the Ten Classics of China, and the Siddhantas of India. He considers Greek and Roman developments from their beginnings in Ionian rationalism to the fall of Constantinople; covers medieval European ideas and Renaissance trends; analyzes 17th- and 18th-century contributions; and offers an illuminating exposition of 19th century concepts. Every important figure in mathematical history is dealt with — Euclid, Archimedes, Diophantus, Omar Khayyam, Boethius, Fermat, Pascal, Newton, Leibniz, Fourier, Gauss, Riemann, Cantor, and many others.For this latest edition, Dr. Struik has both revised and updated the existing text, and also added a new chapter on the mathematics of the first half of the 20th century. Concise coverage is given to set theory, the influence of relativity and quantum theory, tensor calculus, the Lebesgue integral, the calculus of variations, and other important ideas and concepts. The book concludes with the beginnings of the computer era and the seminal work of von Neumann, Turing, Wiener, and others."The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature Magazine.
Algebraic Topology
Allen Hatcher - 2001
This introductory text is suitable for use in a course on the subject or for self-study, featuring broad coverage and a readable exposition, with many examples and exercises. The four main chapters present the basics: fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The author emphasizes the geometric aspects of the subject, which helps students gain intuition. A unique feature is the inclusion of many optional topics not usually part of a first course due to time constraints: Bockstein and transfer homomorphisms, direct and inverse limits, H-spaces and Hopf algebras, the Brown representability theorem, the James reduced product, the Dold-Thom theorem, and Steenrod squares and powers.
Differential Equations with Applications and Historical Notes
George F. Simmons - 1972
Simmons advocates a careful approach to the subject, covering such topics as the wave equation, Gauss's hypergeometric function, the gamma function and the basic problems of the calculus of variations in an explanatory fashions - ensuring that students fully understand and appreciate the topics.
Mathematics In The Modern World: Readings From Scientific American
Morris Kline - 1968
A First Course in Abstract Algebra
John B. Fraleigh - 1967
Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.
King of Infinite Space: Donald Coxeter, the Man Who Saved Geometry
Siobhan Roberts - 2006
Yet geometry is so much more than shapes and numbers; indeed, it governs much of our lives—from architecture and microchips to car design, animated movies, the molecules of food, even our own body chemistry. And as Siobhan Roberts elegantly conveys in The King of Infinite Space, there can be no better guide to the majesty of geometry than Donald Coxeter, perhaps the greatest geometer of the twentieth century.Many of the greatest names in intellectual history—Pythagoras, Plato, Archimedes, Euclid— were geometers, and their creativity and achievements illuminate those of Coxeter, revealing geometry to be a living, ever-evolving endeavor, an intellectual adventure that has always been a building block of civilization. Coxeter's special contributions—his famed Coxeter groups and Coxeter diagrams—have been called by other mathematicians "tools as essential as numbers themselves," but his greatest achievement was to almost single-handedly preserve the tradition of classical geometry when it was under attack in a mathematical era that valued all things austere and rational.Coxeter also inspired many outside the field of mathematics. Artist M. C. Escher credited Coxeter with triggering his legendary Circle Limit patterns, while futurist/inventor Buckminster Fuller acknowledged that his famed geodesic dome owed much to Coxeter's vision. The King of Infinite Space is an elegant portal into the fascinating, arcane world of geometry.
The Shape of a Life: One Mathematician's Search for the Universe's Hidden Geometry
Shing-Tung Yau - 2019
“An unexpectedly intimate look into a highly accomplished man, his colleagues and friends, the development of a new field of geometric analysis, and a glimpse into a truly uncommon mind.”—Nina MacLaughlin,
Boston Globe
“Engaging, eminently readable . . . For those with a taste for elegant and largely jargon-free explanations of mathematics, The Shape of a Life promises hours of rewarding reading.”—Judith Goodstein, American Scientist Harvard geometer and Fields medalist Shing-Tung Yau has provided a mathematical foundation for string theory, offered new insights into black holes, and mathematically demonstrated the stability of our universe. In this autobiography, Yau reflects on his improbable journey to becoming one of the world’s most distinguished mathematicians. Beginning with an impoverished childhood in China and Hong Kong, Yau takes readers through his doctoral studies at Berkeley during the height of the Vietnam War protests, his Fields Medal–winning proof of the Calabi conjecture, his return to China, and his pioneering work in geometric analysis. This new branch of geometry, which Yau built up with his friends and colleagues, has paved the way for solutions to several important and previously intransigent problems. With complicated ideas explained for a broad audience, this book offers readers not only insights into the life of an eminent mathematician, but also an accessible way to understand advanced and highly abstract concepts in mathematics and theoretical physics.
Higher Engineering Mathematics
B.V. Ramana - 2006
Plethora of Solved examples help the students know the variety of problems & Procedure to solve them. Plenty of practice problems facilitate testing their understanding of the subject. Key Features: Covers the syllabus of all the four papers of Engineering Mathematics Detailed coverage of topics with lot of solved examples rendering clear understanding to the students. Engineering Applications of Integral Calculus, Ordinary Differential Equations of First and Higher Order, & Partial Differential Equations illustrate the use of these methods. Chapters on preliminary topics like Analytical Solid Geometry Matrices and Determinants Sequence and Series Complex Numbers Vector Algebra Differential and Integral Calculus Extensive coverage of Probability and Statistics (5 chapters). Covers the syllabus of all the four papers of Engineering Mathematics Engineering Applications of Integral Calculus, Ordinary Differential Equations of First and Higher Order, & Partial Differential Equations illustrate the use of these methods. Extensive coverage of ?Probability and Statistics (5 chapters) Table of Content: PART I PRELIMI NARIES Chapter 1 Vector Algebra , Theory of Equations ,Complex Numbers PART II DIFFERENTIAL AND INTEGRAL CALCULUS
The Little Book of Mathematical Principles, Theories, & Things
Robert Solomon - 2008
Rare Book
A Brief History of Mathematical Thought: Key concepts and where they come from
Luke Heaton - 2015
In A Brief History of Mathematical Thought, Luke Heaton explores how the language of mathematics has evolved over time, enabling new technologies and shaping the way people think. From stone-age rituals to algebra, calculus, and the concept of computation, Heaton shows the enormous influence of mathematics on science, philosophy and the broader human story.
The book traces the fascinating history of mathematical practice, focusing on the impact of key conceptual innovations. Its structure of thirteen chapters split between four sections is dictated by a combination of historical and thematic considerations.
In the first section, Heaton illuminates the fundamental concept of number. He begins with a speculative and rhetorical account of prehistoric rituals, before describing the practice of mathematics in Ancient Egypt, Babylon and Greece. He then examines the relationship between counting and the continuum of measurement, and explains how the rise of algebra has dramatically transformed our world. In the second section, he explores the origins of calculus and the conceptual shift that accompanied the birth of non-Euclidean geometries. In the third section, he examines the concept of the infinite and the fundamentals of formal logic. Finally, in section four, he considers the limits of formal proof, and the critical role of mathematics in our ongoing attempts to comprehend the world around us. The story of mathematics is fascinating in its own right, but Heaton does more than simply outline a history of mathematical ideas. More importantly, he shows clearly how the history and philosophy of maths provides an invaluable perspective on human nature.