The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser


Jason Rosenhouse - 2009
    Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, alwayschoosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In this light-hearted yet ultimately serious book, Jason Rosenhouse explores the history of this fascinating puzzle. Using a minimum ofmathematics (and none at all for much of the book), he shows how the problem has fascinated philosophers, psychologists, and many others, and examines the many variations that have appeared over the years. As Rosenhouse demonstrates, the Monty Hall Problem illuminates fundamental mathematical issuesand has abiding philosophical implications. Perhaps most important, he writes, the problem opens a window on our cognitive difficulties in reasoning about uncertainty.

Networks, Crowds, and Markets


David Easley - 2010
    This connectedness is found in many incarnations: in the rapid growth of the Internet, in the ease with which global communication takes place, and in the ability of news and information as well as epidemics and financial crises to spread with surprising speed and intensity. These are phenomena that involve networks, incentives, and the aggregate behavior of groups of people; they are based on the links that connect us and the ways in which our decisions can have subtle consequences for others. This introductory undergraduate textbook takes an interdisciplinary look at economics, sociology, computing and information science, and applied mathematics to understand networks and behavior. It describes the emerging field of study that is growing at the interface of these areas, addressing fundamental questions about how the social, economic, and technological worlds are connected.

Zeno's Paradox: Unraveling the Ancient Mystery Behind the Science of Space and Time


Joseph Mazur - 2008
    Today, these paradoxes remain on the cutting edge of our investigations into the fabric of space and time. Zeno's Paradox uses the motion paradox as a jumping-off point for an exploration of the twenty-five-hundred-year quest to uncover the true nature of the universe. From Galileo to Einstein to Stephen Hawking, some of the greatest minds in history have tackled the problem and made spectacular breakthroughs, but through it all, the paradox of motion remains.

The Math of Life and Death: 7 Mathematical Principles That Shape Our Lives


Kit Yates - 2019
    But for those of us who left math behind in high school, the numbers and figures hurled at us as we go about our days can sometimes leave us scratching our heads and feeling as if we’re fumbling through a mathematical minefield. In this eye-opening and extraordinarily accessible book, mathemati­cian Kit Yates illuminates hidden principles that can help us understand and navigate the chaotic and often opaque surfaces of our world. In The Math of Life and Death, Yates takes us on a fascinating tour of everyday situations and grand-scale applications of mathematical concepts, including exponential growth and decay, optimization, statistics and probability, and number systems. Along the way he reveals the mathematical undersides of controversies over DNA testing, medical screening results, and historical events such as the Chernobyl disaster and the Amanda Knox trial. Readers will finish this book with an enlightened perspective on the news, the law, medicine, and history, and will be better equipped to make personal decisions and solve problems with math in mind, whether it’s choosing the shortest checkout line at the grocery store or halting the spread of a deadly disease.

Information: A Very Short Introduction


Luciano Floridi - 2010
    In this Very Short Introduction, one of the world's leading authorities on the philosophy of information and on information ethics, Luciano Floridi, offers an illuminating exploration of information as it relates to both philosophy and science. He discusses the roots of the concept of information in mathematics and science, and considers the role of information in several fields, including biology. Floridi also discusses concepts such as "Infoglut" (too much information to process) and the emergence of an information society, and he addresses the nature of information as a communication process and its place as a physical phenomenon. Perhaps more important, he explores information's meaning and value, and ends by considering the broader social and ethical issues relating to information, including problems surrounding accessibility, privacy, ownership, copyright, and open source. This book helps us understand the true meaning of the concept and how it can be used to understand our world.About the Series: Combining authority with wit, accessibility, and style, Very Short Introductions offer an introduction to some of life's most interesting topics. Written by experts for the newcomer, they demonstrate the finest contemporary thinking about the central problems and issues in hundreds of key topics, from philosophy to Freud, quantum theory to Islam.

Introduction to Computation and Programming Using Python


John V. Guttag - 2013
    It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of "data science" for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (or MOOC) offered by the pioneering MIT--Harvard collaboration edX.Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. The book does not require knowledge of mathematics beyond high school algebra, but does assume that readers are comfortable with rigorous thinking and not intimidated by mathematical concepts. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming.Introduction to Computation and Programming Using Python can serve as a stepping-stone to more advanced computer science courses, or as a basic grounding in computational problem solving for students in other disciplines.

The End of Certainty: Time, Chaos, and the New Laws of Nature


Ilya Prigogine - 1996
    All of us can remember a moment as a child when time became a personal reality, when we realized what a "year" was, or asked ourselves when "now" happened. Common sense says time moves forward, never backward, from cradle to grave. Nevertheless, Einstein said that time is an illusion. Nature's laws, as he and Newton defined them, describe a timeless, deterministic universe within which we can make predictions with complete certainty. In effect, these great physicists contended that time is reversible and thus meaningless.

An Introduction to Systems Biology: Design Principles of Biological Circuits


Uri Alon - 2006
    It provides a simple mathematical framework which can be used to understand and even design biological circuits. The textavoids specialist terms, focusing instead on several well-studied biological systems that concisely demonstrate key principles. An Introduction to Systems Biology: Design Principles of Biological Circuits builds a solid foundation for the intuitive understanding of general principles. It encourages the reader to ask why a system is designed in a particular way and then proceeds to answer with simplified models.

An Introduction to General Systems Thinking


Gerald M. Weinberg - 1975
    Used in university courses and professional seminars all over the world, the text has proven its ability to open minds and sharpen thinking.Originally published in 1975 and reprinted more than twenty times over a quarter century -- and now available for the first time from Dorset House Publishing -- the text uses clear writing and basic algebraic principles to explore new approaches to projects, products, organizations, and virtually any kind of system.Scientists, engineers, organization leaders, managers, doctors, students, and thinkers of all disciplines can use this book to dispel the mental fog that clouds problem-solving. As author Gerald M. Weinberg writes in the new preface to the Silver Anniversary Edition, "I haven’t changed my conviction that most people don’t think nearly as well as they could had they been taught some principles of thinking.”Now an award-winning author of nearly forty books spanning the entire software development life cycle, Weinberg had already acquired extensive experience as a programmer, manager, university professor, and consultant when this book was originally published.With helpful illustrations, numerous end-of-chapter exercises, and an appendix on a mathematical notation used in problem-solving, An Introduction to General Systems Thinking may be your most powerful tool in working with problems, systems, and solutions.

Advanced Engineering Mathematics


Dennis G. Zill - 1992
    A Key Strength Of This Text Is Zill'S Emphasis On Differential Equations As Mathematical Models, Discussing The Constructs And Pitfalls Of Each. The Third Edition Is Comprehensive, Yet Flexible, To Meet The Unique Needs Of Various Course Offerings Ranging From Ordinary Differential Equations To Vector Calculus. Numerous New Projects Contributed By Esteemed Mathematicians Have Been Added. Key Features O The Entire Text Has Been Modernized To Prepare Engineers And Scientists With The Mathematical Skills Required To Meet Current Technological Challenges. O The New Larger Trim Size And 2-Color Design Make The Text A Pleasure To Read And Learn From. O Numerous NEW Engineering And Science Projects Contributed By Top Mathematicians Have Been Added, And Are Tied To Key Mathematical Topics In The Text. O Divided Into Five Major Parts, The Text'S Flexibility Allows Instructors To Customize The Text To Fit Their Needs. The First Eight Chapters Are Ideal For A Complete Short Course In Ordinary Differential Equations. O The Gram-Schmidt Orthogonalization Process Has Been Added In Chapter 7 And Is Used In Subsequent Chapters. O All Figures Now Have Explanatory Captions. Supplements O Complete Instructor'S Solutions: Includes All Solutions To The Exercises Found In The Text. Powerpoint Lecture Slides And Additional Instructor'S Resources Are Available Online. O Student Solutions To Accompany Advanced Engineering Mathematics, Third Edition: This Student Supplement Contains The Answers To Every Third Problem In The Textbook, Allowing Students To Assess Their Progress And Review Key Ideas And Concepts Discussed Throughout The Text. ISBN: 0-7637-4095-0

The Simpsons and Their Mathematical Secrets


Simon Singh - 2013
    That they exist, Simon Singh reveals, underscores the brilliance of the shows' writers, many of whom have advanced degrees in mathematics in addition to their unparalleled sense of humor. While recounting memorable episodes such as “Bart the Genius” and “Homer3,” Singh weaves in mathematical stories that explore everything from p to Mersenne primes, Euler's equation to the unsolved riddle of P v. NP; from perfect numbers to narcissistic numbers, infinity to even bigger infinities, and much more. Along the way, Singh meets members of The Simpsons' brilliant writing team-among them David X. Cohen, Al Jean, Jeff Westbrook, and Mike Reiss-whose love of arcane mathematics becomes clear as they reveal the stories behind the episodes. With wit and clarity, displaying a true fan's zeal, and replete with images from the shows, photographs of the writers, and diagrams and proofs, The Simpsons and Their Mathematical Secrets offers an entirely new insight into the most successful show in television history.

Laws of Form


George Spencer-Brown - 1969
    The work is powerful and has established a passionate following as well as harsh critics.

Math and the Mona Lisa: The Art and Science of Leonardo Da Vinci


Bülent Atalay - 2004
    Readers of The Da Vinci Code were given a glimpse of the mysterious connections between math, science, and Leonardo's art. Math and the Mona Lisa picks up where The Da Vinci Code left off, illuminating Leonardo's life and work to uncover connections that, until now, have been known only to scholars.Following Leonardo's own unique model, Atalay searches for the internal dynamics of art and science, revealing to us the deep unity of the two cultures. He provides a broad overview of the development of science from the dawn of civilization to today's quantum mechanics. From this base of information, Atalay offers a fascinating view into Leonardo's restless intellect and modus operandi, allowing us to see the source of his ideas and to appreciate his art from a new perspective. William D. Phillips, who won the Nobel Prize in physics in 1997, writes of the author, "Atalay is indeed a modern renaissance man, and he invites us to tap the power of synthesis that is Leonardo's model."

Gametek: The Math and Science of Gaming


Geoffrey Engelstein - 2018
    Connecting games to math, science, and psychology, GameTek has grown to be one of the most popular parts of the show.This volume commemorates the anniversary with a collection of over seventy of the best segments, many with annotations and illustrations.With chapters on everything from Rock, Paper, Scissors to the Prisoner’s Dilemma to Player Engagement to Quasicrystals to Buddha’s Forbidden Games, GameTek is sure to delight not just game designers and players, but anyone who wants to learn about the world from a new perspective.Sections:• Game Theory• Math• Psychology• Science• Game Mechanics• Psychology Games• HistoryFrom the first time I heard it, the GameTek segment in The Dice Tower podcast became my favorite part of the show. Listening to Geoff is like going to your favorite lesson with your favorite teacher. He teaches about games (yay!) and does it in a very interesting way with lots of examples. He does amazing stuff. He knows about the construction of games, he knows the theory, he knows all that stuff behind the scenes that we gamers do not see when just playing a game and having fun.Ignacy Trzewiczek, Portal GamesThere are many hobby game 'experts' out there, dying to give you their opinion on how the industry works, how games work, what types of games are best, and so on. Geoff Engelstein is the expert that requires your attention. He is a scholar of games, and his research on games and other principles that apply to gaming is matched by none.Stephen Buonocore, Stronghold GamesOver the years, I’ve listened to a lot of people talk about board games, yet the short snippets that Geoff puts out are the ones that I find myself thinking about in the quiet of the night. His are the segments that you laugh at and say, “I have NO idea what you are talking about” — but later on use to show people just how intellectual you are.Tom Vasel, The Dice Tower

Student Solutions Manual for Contemporary Abstract Algebra


Joseph A. Gallian - 2009
    Contains complete worked solutions to all regular exercises and computer exercises in the text; additional test questions and their solutions; an online laboratory manual for the computer algebra system GAP, with exercises tied to the book and an instructor answer key; and links on the author's website to true/false questions, flash cards, essays, software downloads, and other abstract algebra-related materials.