Elements of Partial Differential Equations


Ian N. Sneddon - 2006
    It emphasizes forms suitable for students and researchers whose interest lies in solving equations rather than in general theory. Solutions to odd-numbered problems appear at the end. 1957 edition.

Computational Geometry: Algorithms and Applications


Mark de Berg - 1997
    The focus is on algorithms and hence the book is well suited for students in computer science and engineering. Motivation is provided from the application areas: all solutions and techniques from computational geometry are related to particular applications in robotics, graphics, CAD/CAM, and geographic information systems. For students this motivation will be especially welcome. Modern insights in computational geometry are used to provide solutions that are both efficient and easy to understand and implement. All the basic techniques and topics from computational geometry, as well as several more advanced topics, are covered. The book is largely self-contained and can be used for self-study by anyone with a basic background in algorithms. In the second edition, besides revisions to the first edition, a number of new exercises have been added.

Convex Optimization


Stephen Boyd - 2004
    A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.

Math-terpieces: The Art of Problem-Solving


Greg Tang - 2003
    Keeping an open mind, looking for unusual number combinations, using multiple skills (like subtracting to add) and looking for patterns, will guarantee any child success in math. In MATH-TERPIECES, Tang continues to challenge kids with his innovative approach to math, and uses art history to expand his vision for creative problem-solving.

Zero Is the Leaves on the Tree


Betsy Franco - 2009
    But how do you count zero, a number that is best defined by what it's not?Can you see it?Can you hear it?Can you feel it?This important math concept is beautifully explored in a way that will inspire children to find zero everywhere--from the branches of a tree by day to the vast, starry sky by night.

The Adventures of Penrose the Mathematical Cat


Theoni Pappas - 1997
    Penrose, a cat with a knack for math, takes children on an adventurous tour of mathematical concepts from fractals to infinity.

A Place for Zero


Angeline Sparagna Lopresti - 1995
    He can't play Addemup with the other numbers, because he has nothing to add. What's a digit to do? Join Zero as he goes on a journey to discover his place.

Linear Algebra


Georgi E. Shilov - 1971
    Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.

An Introduction to Probability Theory and Its Applications, Volume 1


William Feller - 1968
    Beginning with the background and very nature of probability theory, the book then proceeds through sample spaces, combinatorial analysis, fluctuations in coin tossing and random walks, the combination of events, types of distributions, Markov chains, stochastic processes, and more. The book's comprehensive approach provides a complete view of theory along with enlightening examples along the way.

Conned Again, Watson: Cautionary Tales Of Logic, Math, And Probability


Colin Bruce - 2000
    In these cautionary tales of greedy gamblers, reckless businessmen, and ruthless con men, Sherlock Holmes uses his deep understanding of probability, statistics, decision theory, and game theory to solve crimes and protect the innocent. But it's not just the characters in these well-crafted stories that are deceived by statistics or fall prey to gambling fallacies. We all suffer from the results of poor decisions. In this illuminating collection, Bruce entertains while teaching us to avoid similar blunders. From "The Execution of Andrews" to "The Case of the Gambling Nobleman," there has never been a more exciting way to learn when to take a calculated risk-and how to spot a scam.

Equal Shmequal


Virginia L. Kroll - 2005
    Nothing works until Mouse starts thinking mathematically. Wonderful illustrations capture Mouse and her animal friends from whiskers to tails.

Symmetry


Hermann Weyl - 1952
    Hermann Weyl explores the concept of symmetry beginning with the idea that it represents a harmony of proportions, and gradually departs to examine its more abstract varieties and manifestations--as bilateral, translatory, rotational, ornamental, and crystallographic. Weyl investigates the general abstract mathematical idea underlying all these special forms, using a wealth of illustrations as support. Symmetry is a work of seminal relevance that explores the great variety of applications and importance of symmetry.

How Much Is a Million?


David M. Schwartz - 1985
    It's a math class you'll never forget.This classic picture book is an ALA Notable Book, a Reading Rainbow Feature Selection, and a Boston Globe/Horn Book Honor Book for Illustration.The repackage of this fun look at math concepts includes a letter from the author that features several ways for children to find a million everyday things.

Everything and More: A Compact History of Infinity


David Foster Wallace - 2003
    Now he brings his considerable talents to the history of one of math's most enduring puzzles: the seemingly paradoxical nature of infinity.Is infinity a valid mathematical property or a meaningless abstraction? The nineteenth-century mathematical genius Georg Cantor's answer to this question not only surprised him but also shook the very foundations upon which math had been built. Cantor's counterintuitive discovery of a progression of larger and larger infinities created controversy in his time and may have hastened his mental breakdown, but it also helped lead to the development of set theory, analytic philosophy, and even computer technology.Smart, challenging, and thoroughly rewarding, Wallace's tour de force brings immediate and high-profile recognition to the bizarre and fascinating world of higher mathematics.

Crash! Boom!


Robie H. Harris - 2018
    Harris.Elephant has a bucket of blocks and wants to build something tall. Something as tall as Elephant. But will it stay up? CRASH! BOOM! Not this time. Build it again? One block. Two blocks? Four blocks? It's still not as tall as Elephant. More blocks! Now will it stay up? Now will it be as tall as Elephant? Build, balance, count -- question, estimate, measure -- predict, crash, and build again! Young children will happily follow along as Elephant goes through the ups and downs of creating something new and finally celebrates the joy and pride of success.