Book picks similar to
The Quantum Cookbook: Mathematical Recipes of the Foundations for Quantum Mechanics by Jim Baggott
science
mathematics
non-fiction
fizika
The Best American Science Writing 2012
Michio Kaku - 2012
The Best American Science Writing 2012 is yet another endlessly fascinating and mind-expanding installment of the popular science series that Kirkus Reviews calls, “Superb brain candy.” Edited by renowned theoretical physicist and bestselling author Michio Kaku, co-founder of string field theory, this collection contains the most engaging and provocative science writing of the year—gathering in one volume enthralling and eye-opening essays about the latest developments in biochemistry, physics, astronomy, genetics, evolutionary theory, cognition, and more.
American Legends: The Life of Doris Day
Charles River Editors - 2013
*Includes Day's quotes about her life and career. *Includes a bibliography for further reading. *Includes a table of contents. “I’ve been through everything. I always said I was like those round-bottomed circus dolls — you know, those dolls you could push down and they’d come back up? I’ve always been like that. I’ve always said, ‘No matter what happens, if I get pushed down, I’m going to come right back up.’” – Doris Day A lot of ink has been spilled covering the lives of history’s most influential figures, but how much of the forest is lost for the trees? In Charles River Editors’ American Legends series, readers can get caught up to speed on the lives of America’s most important men and women in the time it takes to finish a commute, while learning interesting facts long forgotten or never known. It goes without saying that few people have a career spanning 8 decades, yet that claim to fame is occupied by the legendary Doris Day, who got her start in show business as a singer in a big band in 1939 and has not let up since. From there, Day went on to record dozens of albums and hundreds of songs, winning a countless number of awards on the way to being one of the 20th century’s most popular singers. One of those recognitions came just a few years ago in 2011, when Day, by that time nearing 90 years old, released a new album that charted 9th in the UK Top 40 Albums, making her the oldest singer ever with that distinction. Her musical career would’ve been impressive enough, but Doris Day is just as well known today for her film career, which wasn’t so bad itself. Though her time in Hollywood was much shorter in comparison to her music career, she nevertheless managed to reach the top in that industry as well. As one of the most popular actresses of the ‘60s, Day was the biggest box office draw in Hollywood in the early half of that decade, and the only woman among the Top 10. In the process of making nearly 40 movies, Day would eventually be recognized as the highest grossing actress in history, and at the same time she was good enough at her craft to be nominated for an Oscar for Best Actress. Amazingly, despite her incredible success in both music and film, Day eventually found herself bankrupt due to the mismanagement of her money by her husband, compelling her to reinvent herself as the host of a popular television sitcom. Perhaps not surprisingly, Day excelled in this field as well, making The Doris Day Show one of the most popular shows on television for several years at the end of the ‘60s. American Legends: The Life of Doris Day examines the life and career of one of the entertainment industry’s biggest stars. Along with pictures of important people, places, and events, you will learn about Doris Day like never before, in no time at all.
How to Count to Infinity
Marcus du Sautoy - 2020
But this book will help you to do something that humans have only recently understood how to do: to count to regions that no animal has ever reached.
By the end of this book you'll be able to count to infinity... and beyond.
On our way to infinity we'll discover how the ancient Babylonians used their bodies to count to 60 (which gave us 60 minutes in the hour), how the number zero was only discovered in the 7th century by Indian mathematicians contemplating the void, why in China going into the red meant your numbers had gone negative and why numbers might be our best language for communicating with alien life.But for millennia, contemplating infinity has sent even the greatest minds into a spin. Then at the end of the nineteenth century mathematicians discovered a way to think about infinity that revealed that it is a number that we can count. Not only that. They found that there are an infinite number of infinities, some bigger than others. Just using the finite neurons in your brain and the finite pages in this book, you'll have your mind blown discovering the secret of how to count to infinity.Do something amazing and learn a new skill thanks to the Little Ways to Live a Big Life books!
An Introduction To Quantum Field Theory
Michael E. Peskin - 1994
The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Differential Equations with Applications and Historical Notes
George F. Simmons - 1972
Simmons advocates a careful approach to the subject, covering such topics as the wave equation, Gauss's hypergeometric function, the gamma function and the basic problems of the calculus of variations in an explanatory fashions - ensuring that students fully understand and appreciate the topics.
Einstein's Heroes: Imagining the World Through the Language of Mathematics
Robyn Arianrhod - 2004
Einstein's Heroes takes you on a journey of discovery about just such a miraculous language--the language of mathematics--one of humanity's mostamazing accomplishments. Blending science, history, and biography, this remarkable book reveals the mysteries of mathematics, focusing on the life and work of three of Albert Einstein's heroes: Isaac Newton, Michael Faraday, and especially James Clerk Maxwell, whose work directly inspired the theory of relativity. RobynArianrhod bridges the gap between science and literature, portraying mathematics as a language and arguing that a physical theory is a work of imagination involving the elegant and clever use of this language. The heart of the book illuminates how Maxwell, using the language of mathematics in a newand radical way, resolved the seemingly insoluble controversy between Faraday's idea of lines of force and Newton's theory of action-at-a-distance. In so doing, Maxwell not only produced the first complete mathematical description of electromagnetism, but actually predicted the existence of theradio wave, teasing it out of the mathematical language itself. Here then is a fascinating look at mathematics: its colorful characters, its historical intrigues, and above all its role as the uncannily accurate language of nature.
Quantum Mechanics
Jim Al-Khalili - 2017
You'll discover how the sun shines, why light is both a wave and a particle, the certainty of the Uncertainty Principle, Schrodinger's Cat, Einstein's spooky action, how to build a quantum computer, and why quantum mechanics drives even its experts completely crazy.
'Jim Al-Khalili has done an admirable job of condensing the ideas of quantum physics from Max Planck to the possibilities of quantum computers into brisk, straightforward English' The Times
Linear Algebra With Applications
Steven J. Leon - 1980
Each chapter contains integrated worked examples and chapter tests. This edition has the ancillary ATLAST computer exercise guide and new MATLAB and Maple guides.
Where Does The Weirdness Go?: Why Quantum Mechanics Is Strange, But Not As Strange As You Think
David Lindley - 1996
Everyday experience cannot prepare us for the sub-atomic world, where quantum effects become all-important. Here, particles can look like waves, and vice versa; electrons seem to lose their identity and instead take on a shifting, unpredictable appearance that depends on how they are being observed; and a single photon may sometimes behave as if it could be in two places at once. In the world of quantum mechanics, uncertainty and ambiguity become not just unavoidable, but essential ingredients of science -- a development so disturbing that to Einstein "it was as if God were playing dice with the universe." And there is no one better able to explain the quantum revolution as it approaches the century mark than David Lindley. He brings the quantum revolution full circle, showing how the familiar and trustworthy reality of the world around us is actually a consequence of the ineffable uncertainty of the subatomic quantum world -- the world we can't see.
The Einstein Paradox: And Other Science Mysteries Solved By Sherlock Holmes
Colin Bruce - 1997
Murder on a royal train. Divers dead of heatstroke at the bottom of an icy sea. An epidemic of insanity among the world's top scientists. This is the story of the great paradigm shifts of science, told as never before: in Sherlock Holmes adventures set amid the grandeur and squalor of Victorian London. Holmes, Watson, and other beloved characters created by Arthur Conan Doyle are challenged by mysteries, each of which hinges on a scientific paradox or principle. Colin Bruce has recreated the atmosphere of the original Sherlock Holmes stories to give a truly compulsive read. You won't even realize you've learned something until it's too late!
Einstein's Theory of Relativity
Max Born - 1962
This is such a book. Max Born is a Nobel Laureate (1955) and one of the world's great physicists: in this book he analyzes and interprets the theory of Einsteinian relativity. The result is undoubtedly the most lucid and insightful of all the books that have been written to explain the revolutionary theory that marked the end of the classical and the beginning of the modern era of physics.The author follows a quasi-historical method of presentation. The book begins with a review of the classical physics, covering such topics as origins of space and time measurements, geometric axioms, Ptolemaic and Copernican astronomy, concepts of equilibrium and force, laws of motion, inertia, mass, momentum and energy, Newtonian world system (absolute space and absolute time, gravitation, celestial mechanics, centrifugal forces, and absolute space), laws of optics (the corpuscular and undulatory theories, speed of light, wave theory, Doppler effect, convection of light by matter), electrodynamics (including magnetic induction, electromagnetic theory of light, electromagnetic ether, electromagnetic laws of moving bodies, electromagnetic mass, and the contraction hypothesis). Born then takes up his exposition of Einstein's special and general theories of relativity, discussing the concept of simultaneity, kinematics, Einstein's mechanics and dynamics, relativity of arbitrary motions, the principle of equivalence, the geometry of curved surfaces, and the space-time continuum, among other topics. Born then points out some predictions of the theory of relativity and its implications for cosmology, and indicates what is being sought in the unified field theory.This account steers a middle course between vague popularizations and complex scientific presentations. This is a careful discussion of principles stated in thoroughly acceptable scientific form, yet in a manner that makes it possible for the reader who has no scientific training to understand it. Only high school algebra has been used in explaining the nature of classical physics and relativity, and simple experiments and diagrams are used to illustrate each step. The layman and the beginning student in physics will find this an immensely valuable and usable introduction to relativity. This Dover 1962 edition was greatly revised and enlarged by Dr. Born.
The Amazing Story of Quantum Mechanics: A Math-Free Exploration of the Science that Made Our World
James Kakalios - 2010
Using illustrations and examples from science fiction pulp magazines and comic books, The Amazing Story of Quantum Mechanics explains the fundamental principles of quantum mechanics that underlie the world we live in.Watch a Video
Lectures on Quantum Mechanics
Paul A.M. Dirac - 1964
The remaining lectures build on that idea, examining the possibility of building a relativistic quantum theory on curved surfaces or flat surfaces.
Mathematics of Classical and Quantum Physics
Frederick W. Byron Jr. - 1969
Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.
Problems Plus In Iit Mathematics
A. Das Gupta
This is type of problems asked at the JEE (IIT). The purpose of this book is to show students how to handle such problems and give them sufficient practice in solving problems of this type, thus building their confidence. The main features of this book are:Each chapter begins with a summary of facts, formulate and working techniques. Trick, tips and techniques have been clearly marked with the icon.A large number of problems have been solved and explained in each chapter.The exercises contain short-answer, long-answer and objective type questions.Multiple-choice questions in which more than one option may be correct have also been given.Time-bound tests at the end of each chapter will help students practise answering questions in a given time.The book also includes integrated tests, bases on all the chapters.A chapter containing miscellaneous problems has been given at the end of the book. This will help students gain confidence in solving problems without prior knowledge of the chapter(s) to which the problems belong.Table of ContentsAlgebraProgressions, Related Inequalities and SeriesDeterminants and Cramer's RuleEquations, Inequations and ExpressionsComplex NumbersPermutation and CombinationBinomial Theorem for Positive Integral IndexPrinciple of Mathematical Induction (PMI)Infinite SeriesMatricesTrigonometryCircular Functions, IdentitiesSolution of EquationsInverse Circular FunctionsTrigonometrical Inequalities and InequationsLogarithmProperties of TriangleHeights and DistancesCoordinate GeometryCoordinates and Straight LinesPairs of Straight Lines and Transformation of AxesCirclesParabolaEllipse and HyperbolaCalculusFunctionDifferentiationLimit, Indeterminate FormContinuity, Differentiability and Graph of FunctionApplication of dy/dxMaxima and MinimaMonotonic Function and Lagrange's TheoremIndefinite In