Mechanical Engineering Design


Joseph Edward Shigley - 1972
    This book also features the design process, streamlined coverage of statistics, an overview of materials and materials selection, failure and fatigue, and review of basic strength of materials topics.

Numerical Recipes in C: The Art of Scientific Computing


William H. Press - 1988
    In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines bringing the total to well over 300, plus upgraded versions of the original routines, the new edition remains the most practical, comprehensive handbook of scientific computing available today.

The Book of PoC||GTFO


Manul Laphroaig - 2017
    Until now, the journal has only been available online or printed and distributed for free at hacker conferences worldwide.Consistent with the journal's quirky, biblical style, this book comes with all the trimmings: a leatherette cover, ribbon bookmark, bible paper, and gilt-edged pages. The book features more than 80 technical essays from numerous famous hackers, authors of classics like "Reliable Code Execution on a Tamagotchi," "ELFs are Dorky, Elves are Cool," "Burning a Phone," "Forget Not the Humble Timing Attack," and "A Sermon on Hacker Privilege." Twenty-four full-color pages by Ange Albertini illustrate many of the clever tricks described in the text.

Business Data Communications and Networking


Jerry FitzGerald - 1995
    Updated with the latest advances in the field, Jerry FitzGerald and Alan Dennis' 10th Edition of Business Data Communications and Networking continues to provide the fundamental concepts and cutting-edge coverage applications that students need to succeed in this fast-moving field.Authors FitzGerald and Dennis have developed a foundation and balanced presentation from which new technologies and applications can be easily understood, evaluated, and compared.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Planning, Implementing, and Evaluating Health Promotion Programs: A Primer


James F. McKenzie - 1992
    The Fifth Edition features updated information throughout, including new theories and models such as the Healthy Action Process Approach (HAPA) and the Community Readiness Model (CRM), sections on grant writing and preparing a budget, real-life examples of marketing principles and processes, and a new classification system for evaluation approaches and designs. Health Education, Health Promotion, Health Educators, and Program Planning, Models for Program Planning in Health Promotion, Starting the Planning Process, Assessing Needs, Measurement, Measures, Measurement Instruments and Sampling, Mission Statement, Goals, and Objectives, Theories and Models Commonly Used for Health Promotion Interventions, Interventions, Community Organizing and Community Building, Identification and Allocation of Resources, Marketing: Making Sure Programs Respond to Wants and Needs of Consumers, Implementation: Strategies and Associated Concerns, Evaluation: An Overview, Evaluation Approaches and Designs, Data Analysis and Reporting. Intended for those interested in learning the basics of planning, implementing, and evaluating health promotion programs

Linear Algebra


Stephen H. Friedberg - 1979
     This top-selling, theorem-proof text presents a careful treatment of the principal topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.

Domain-Driven Design: Tackling Complexity in the Heart of Software


Eric Evans - 2003
    "His book is very compatible with XP. It is not about drawing pictures of a domain; it is about how you think of it, the language you use to talk about it, and how you organize your software to reflect your improving understanding of it. Eric thinks that learning about your problem domain is as likely to happen at the end of your project as at the beginning, and so refactoring is a big part of his technique. "The book is a fun read. Eric has lots of interesting stories, and he has a way with words. I see this book as essential reading for software developers--it is a future classic." --Ralph Johnson, author of Design Patterns "If you don't think you are getting value from your investment in object-oriented programming, this book will tell you what you've forgotten to do. "Eric Evans convincingly argues for the importance of domain modeling as the central focus of development and provides a solid framework and set of techniques for accomplishing it. This is timeless wisdom, and will hold up long after the methodologies du jour have gone out of fashion." --Dave Collins, author of Designing Object-Oriented User Interfaces "Eric weaves real-world experience modeling--and building--business applications into a practical, useful book. Written from the perspective of a trusted practitioner, Eric's descriptions of ubiquitous language, the benefits of sharing models with users, object life-cycle management, logical and physical application structuring, and the process and results of deep refactoring are major contributions to our field." --Luke Hohmann, author of Beyond Software Architecture "This book belongs on the shelf of every thoughtful software developer." --Kent Beck "What Eric has managed to capture is a part of the design process that experienced object designers have always used, but that we have been singularly unsuccessful as a group in conveying to the rest of the industry. We've given away bits and pieces of this knowledge...but we've never organized and systematized the principles of building domain logic. This book is important." --Kyle Brown, author of Enterprise Java(TM) Programming with IBM(R) WebSphere(R) The software development community widely acknowledges that domain modeling is central to software design. Through domain models, software developers are able to express rich functionality and translate it into a software implementation that truly serves the needs of its users. But despite its obvious importance, there are few practical resources that explain how to incorporate effective domain modeling into the software development process. Domain-Driven Design fills that need. This is not a book about specific technologies. It offers readers a systematic approach to domain-driven design, presenting an extensive set of design best practices, experience-based techniques, and fundamental principles that facilitate the development of software projects facing complex domains. Intertwining design and development practice, this book incorporates numerous examples based on actual projects to illustrate the application of domain-driven design to real-world software development. Readers learn how to use a domain model to make a complex development effort more focused and dynamic. A core of best practices and standard patterns provides a common language for the development team. A shift in emphasis--refactoring not just the code but the model underlying the code--in combination with the frequent iterations of Agile development leads to deeper insight into domains and enhanced communication between domain expert and programmer. Domain-Driven Design then builds on this foundation, and addresses modeling and design for complex systems and larger organizations.Specific topics covered include:Getting all team members to speak the same language Connecting model and implementation more deeply Sharpening key distinctions in a model Managing the lifecycle of a domain object Writing domain code that is safe to combine in elaborate ways Making complex code obvious and predictable Formulating a domain vision statement Distilling the core of a complex domain Digging out implicit concepts needed in the model Applying analysis patterns Relating design patterns to the model Maintaining model integrity in a large system Dealing with coexisting models on the same project Organizing systems with large-scale structures Recognizing and responding to modeling breakthroughs With this book in hand, object-oriented developers, system analysts, and designers will have the guidance they need to organize and focus their work, create rich and useful domain models, and leverage those models into quality, long-lasting software implementations.

Fundamentals of Database Systems


Ramez Elmasri - 1989
    It features excellent examples and access to Addison Wesley's database Web site that includes further teaching, tutorials and many useful student resources.

Physics for Scientists and Engineers


Paul Allen Tipler - 1981
    Now in its fourth edition, the work has been extensively revised, with entirely new artwork, updated examples and new pedagogical features. An interactive CD-ROM with worked examples is included. Alternatively, the material on from the CD-ROM can be down-loaded from a website (see supplements section). Twentieth-century developments such as quantum mechanics are introduced early on, so that students can appreciate their importance and see how they fit into the bigger picture.

Partial Differential Equations for Scientists and Engineers


Stanley J. Farlow - 1982
    Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.

Deep Learning with Python


François Chollet - 2017
    It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.

Fourier Series


Georgi P. Tolstov - 1976
    Over 100 problems at ends of chapters. Answers in back of book. 1962 edition.

Mathematical Methods for Physicists


George B. Arfken - 1970
    This work includes differential forms and the elegant forms of Maxwell's equations, and a chapter on probability and statistics. It also illustrates and proves mathematical relations.

A Tour of C++


Bjarne Stroustrup - 2013
    Bjarne Stroustrup, the designer and original implementer of C++, thoroughly covers the details of this language and its use in his definitive reference, The C++ Programming Language, Fourth Edition. In A Tour of C++ , Stroustrup excerpts the overview chapters from that complete reference, expanding and enhancing them to give an experienced programmer-in just a few hours-a clear idea of what constitutes modern C++. In this concise, self-contained guide, Stroustrup covers most major language features and the major standard-library components-not, of course, in great depth, but to a level that gives programmers a meaningful overview of the language, some key examples, and practical help in getting started. Stroustrup presents the C++ features in the context of the programming styles they support, such as object-oriented and generic programming. His tour is remarkably comprehensive. Coverage begins with the basics, then ranges widely through more advanced topics, including many that are new in C++11, such as move semantics, uniform initialization, lambda expressions, improved containers, random numbers, and concurrency. The tour ends with a discussion of the design and evolution of C++ and the extensions added for C++11. This guide does not aim to teach you how to program (see Stroustrup's Programming: Principles and Practice Using C++ for that); nor will it be the only resource you'll need for C++ mastery (see Stroustrup's The C++ Programming Language, Fourth Edition, for that). If, however, you are a C or C++ programmer wanting greater familiarity with the current C++ language, or a programmer versed in another language wishing to gain an accurate picture of the nature and benefits of modern C++, you can't find a shorter or simpler introduction than this tour provides.