The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma


Alan Turing - 2004
    In 1935, aged 22, he developed the mathematical theory upon which all subsequent stored-program digital computers are modeled.At the outbreak of hostilities with Germany in September 1939, he joined the Government Codebreaking team at Bletchley Park, Buckinghamshire and played a crucial role in deciphering Engima, the code used by the German armed forces to protect their radio communications. Turing's work on the versionof Enigma used by the German navy was vital to the battle for supremacy in the North Atlantic. He also contributed to the attack on the cyphers known as Fish, which were used by the German High Command for the encryption of signals during the latter part of the war. His contribution helped toshorten the war in Europe by an estimated two years.After the war, his theoretical work led to the development of Britain's first computers at the National Physical Laboratory and the Royal Society Computing Machine Laboratory at Manchester University.Turing was also a founding father of modern cognitive science, theorizing that the cortex at birth is an unorganized machine which through training becomes organized into a universal machine or something like it. He went on to develop the use of computers to model biological growth, launchingthe discipline now referred to as Artificial Life.The papers in this book are the key works for understanding Turing's phenomenal contribution across all these fields. The collection includes Turing's declassified wartime Treatise on the Enigma; letters from Turing to Churchill and to codebreakers; lectures, papers, and broadcasts which opened upthe concept of AI and its implications; and the paper which formed the genesis of the investigation of Artifical Life.

The Pea and the Sun: A Mathematical Paradox


Leonard M. Wapner - 2005
    Would you believe that these five pieces can be reassembled in such a fashion so as to create two apples equal in shape and size to the original? Would you believe that you could make something as large as the sun by breaking a pea into a finite number of pieces and putting it back together again? Neither did Leonard Wapner, author of The Pea and the Sun, when he was first introduced to the Banach-Tarski paradox, which asserts exactly such a notion. Written in an engaging style, The Pea and the Sun catalogues the people, events, and mathematics that contributed to the discovery of Banach and Tarski's magical paradox. Wapner makes one of the most interesting problems of advanced mathematics accessible to the non-mathematician.

Conned Again, Watson: Cautionary Tales Of Logic, Math, And Probability


Colin Bruce - 2000
    In these cautionary tales of greedy gamblers, reckless businessmen, and ruthless con men, Sherlock Holmes uses his deep understanding of probability, statistics, decision theory, and game theory to solve crimes and protect the innocent. But it's not just the characters in these well-crafted stories that are deceived by statistics or fall prey to gambling fallacies. We all suffer from the results of poor decisions. In this illuminating collection, Bruce entertains while teaching us to avoid similar blunders. From "The Execution of Andrews" to "The Case of the Gambling Nobleman," there has never been a more exciting way to learn when to take a calculated risk-and how to spot a scam.

Building Thinking Classrooms in Mathematics, Grades K-12: 14 Teaching Practices for Enhancing Learning


Peter Liljedahl - 2020
     Building Thinking Classrooms in Mathematics, Grades K-12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guideProvides the what, why, and how of each practice Includes firsthand accounts of how these practices foster thinking Offers a plethora of macro moves, micro moves, and rich tasks to get started

A Mathematical Introduction to Logic


Herbert B. Enderton - 1972
    The author has made this edition more accessible to better meet the needs of today's undergraduate mathematics and philosophy students. It is intended for the reader who has not studied logic previously, but who has some experience in mathematical reasoning. Material is presented on computer science issues such as computational complexity and database queries, with additional coverage of introductory material such as sets.

Introduction to the Theory of Computation


Michael Sipser - 1996
    Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.

Thinking about Mathematics: The Philosophy of Mathematics


Stewart Shapiro - 2000
    Part I describes questions and issues about mathematics that have motivated philosophers since the beginning of intellectual history. Part II is an historical survey, discussing the role of mathematics in the thought of such philosophers as Plato, Aristotle, Kant, and Mill. Part III covers the three major positions held throughout the twentieth century: the idea that mathematics is logic (logicism), the view that the essence of mathematics is the rule-governed manipulation of characters (formalism), and a revisionist philosophy that focuses on the mental activity of mathematics (intuitionism). Finally, Part IV brings the reader up-to-date with a look at contemporary developments within the discipline.This sweeping introductory guide to the philosophy of mathematics makes these fascinating concepts accessible to those with little background in either mathematics or philosophy.

Chance: The science and secrets of luck, randomness and probability (New Scientist)


Michael Brooks - 2015
    So it's not surprising that we persist in thinking that we're in with a chance, whether we're playing the lottery or working out the likelihood of extra-terrestrial life. In Chance, a (not entirely) random selection of the New Scientist's sharpest minds provide fascinating insights into luck, randomness, risk and probability. From the secrets of coincidence to placing the perfect bet, the science of random number generation to the surprisingly haphazard decisions of criminal juries, it will explore these, and many other, tantalising questions.Following on from the bestselling Nothing and Question Everything, this book will open your eyes to the weird and wonderful world of chance - and help you see when some things, in fact, aren't random at all.

New SYLLABUS Mathematics 3; 6th Edition


Teh Keng Seng
    

A First Course in Probability


Sheldon M. Ross - 1976
    A software diskette provides an easy-to-use tool for students to derive probabilities for binomial.

Laws of Form


George Spencer-Brown - 1969
    The work is powerful and has established a passionate following as well as harsh critics.

A Course in Game Theory


Martin J. Osborne - 1994
    The authors provide precise definitions and full proofs of results, sacrificing generalities and limiting the scope of the material in order to do so. The text is organized in four parts: strategic games, extensive games with perfect information, extensive games with imperfect information, and coalitional games. It includes over 100 exercises. Solution ManualTable of Contents, Errata, and more...

Real Analysis


H.L. Royden - 1963
    Dealing with measure theory and Lebesque integration, this is an introductory graduate text.

The Mathematical Theory of Communication


Claude Shannon - 1949
    Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

Godel: A Life Of Logic, The Mind, And Mathematics


John L. Casti - 2000
    His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.