History of Astronomy


George Forbes - 1909
    Purchasers are entitled to a free trial membership in the General Books Club where they can select from more than a million books without charge. Subjects: Astronomy; History / General; Juvenile Nonfiction / Science

Decoding the Universe: How the New Science of Information Is Explaining Everything in the Cosmos, from Our Brains to Black Holes


Charles Seife - 2006
    In Decoding the Universe, Charles Seife draws on his gift for making cutting-edge science accessible to explain how this new tool is deciphering everything from the purpose of our DNA to the parallel universes of our Byzantine cosmos. The result is an exhilarating adventure that deftly combines cryptology, physics, biology, and mathematics to cast light on the new understanding of the laws that govern life and the universe.

Treknology: The Science of Star Trek from Tricorders to Warp Drive


Ethan Siegel - 2017
    Some of these incredible devices may still be far from our reach, but others have made the leap from science fiction to science fact—and now you can learn the science and engineering of what makes them tick.Treknology looks at over twenty-five iconic inventions from the complete history of the Star Trek television and film universe. Author Ethan Siegel explores and profiles these dazzling technologies and their role Star Trek, the science behind how they work, and how close we are to achieving them in the real world today.This stunning collection is packed with 150 superb film and television stills, prop photography, and scientific diagrams to pull you into another world. Brace yourself for a detailed look at the inner workings of Star Trek’s computing capabilities, communications equipment, medical devices, and awe-inspiring ships. This book is one that no fan of Star Trek, or future tech, will want to miss.

The Mars Project


Wernher von Braun - 1953
    Here the German-born scientist Wernher von Braun detailed what he believed were the problems and possibilities inherent in a projected expedition to Mars.    Today von Braun is recognized as the person most responsible for laying the groundwork for public acceptance of America's space program. When President Bush directed NASA in 1989 to prepare plans for an orbiting space station, lunar research bases, and human exploration of Mars, he was largely echoing what von Braun proposed in The Mars Project.

Worlds Hidden in Plain Sight: The Evolving Idea of Complexity at the Santa Fe Institute, 1984–2019


David C. KrakauerJennifer Dunne - 2019
     Ignoring the boundaries of disciplines and schools and searching for novel fundamental ideas, theories, and practices, this international community integrates the full range of scientific inquiries that will help us to understand and survive on a complex planet. This volume collects essays from the past thirty years of research, in which contributors explain in clear and accessible language many of the deepest challenges and insights of complexity science. Explore the evolution of complex systems science with chapters from Nobel Laureates Murray Gell-Mann and Kenneth Arrow, as well as numerous pioneering complexity researchers, including John Holland, Brian Arthur, Robert May, Richard Lewontin, Jennifer Dunne, and Geoffrey West.

Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles


Robert M. Eisberg - 1974
    Emphasizes the applications of theory, and contains new material on particle physics, electron-positron annihilation in solids and the Mossbauer effect. Includes new appendices on such topics as crystallography, Fourier Integral Description of a Wave Group, and Time-Independent Perturbation Theory.

The Speed Of Time


Sharad Nalawade - 2012
    The world you live in is stranger than fiction... as you read this, you exist in other places at the same time. Do not regret having missed the chance to realize your dreams, for you may just have fulfilled it in another universe.. * Are the trillions of atoms that make you, nothing but vibrations in 10 dimensions?* Is it true that we are all connected with each other?* Can you go into the future to change the present?* Why do scientists and philosophers struggle with the concept of Time?* Can science explain consciousness through physics?* Is our fate driven by the underlying randomness in nature?* Is nature hiding the best-kept secrets which can never be unravelled by humans?The Speed of Time approaches the most complex and esoteric theories of science in lucid, clear and simple language and in the style of a thriller, leaving you wanting more... while addressing questions through the enigmatic theories in Physics such as Quantum Mechanics, Einstein's Theory of Relativity, Time, Chaos, and much more. Just start reading and you will not put it down.

Gaia: A New Look at Life on Earth


James E. Lovelock - 1979
    Written for the non-scientist, Gaia is a journey through time and space in search of evidence with which to support a new and radically different model of our planet. In contrast to conventional belief that living matter is passive in the face of threats to its existence, the book explores the hypothesis that the earth's living matter-air, ocean, and land surfaces-forms a complex system that has the capacity to keep the Earth a fit place for life. Since Gaia was first published, many of Jim Lovelock's predictions have come true, and his theory has become a hotly argued topic in scientific circles. Here, in a new Preface, Lovelock outlines his present state of the debate.

The End of Everything (Astrophysically Speaking)


Katie Mack - 2020
    With the Big Bang, it went from a state of unimaginable density to an all-encompassing cosmic fireball to a simmering fluid of matter and energy, laying down the seeds for everything from dark matter to black holes to one rocky planet orbiting a star near the edge of a spiral galaxy that happened to develop life. But what happens at the end of the story? In billions of years, humanity could still exist in some unrecognizable form, venturing out to distant space, finding new homes and building new civilizations. But the death of the universe is final. What might such a cataclysm look like? And what does it mean for us? Dr. Katie Mack has been contemplating these questions since she was eighteen, when her astronomy professor first informed her the universe could end at any moment, setting her on the path toward theoretical astrophysics. Now, with lively wit and humor, she unpacks them in The End of Everything, taking us on a mind-bending tour through each of the cosmos’ possible finales: the Big Crunch; the Heat Death; Vacuum Decay; the Big Rip; and the Bounce. In the tradition of Neil DeGrasse’s bestseller Astrophysics for People in a Hurry, Mack guides us through major concepts in quantum mechanics, cosmology, string theory, and much more, in a wildly fun, surprisingly upbeat ride to the farthest reaches of everything we know.

Symmetry and the Beautiful Universe


Leon M. Lederman - 2004
    They write f

Universe on A T-Shirt: The Quest for the Theory of Everything


Dan Falk - 2002
    - This is the best kind of popular science: informed, impassioned, and highly accessible.- Compare it to Stephen Hawking's The Universe in a Nutshell, but broader in scope and much more readable.- A crossover for the Young Adult market, now in the perfect format.

The Arrow of Time


Peter Coveney - 1988
    Theories that contain time as a simple quantity form the basis of our understanding of many scientific disciplines, yet the debate rages on: why does there seem to be a direction to time, an arrow of time pointing from past to future?In The Arrow of Time, a major bestseller in England, Dr. Peter Coveney, a research scientist, and award-winning journalist Dr. Roger Highfield, demonstrate that the commonsense view of time agrees with the most advanced scientific theory. Time does in fact move like an arrow, shooting forward into what is genuinely unknown, leaving the past immutably behind. The authors make their case by exploring three centuries of science, offering bold reinterpretations of Newton's mechanics, Einstein's special and general theories of relativity, quantum mechanics, and advancing the insights of James Gleick's Chaos.

The Quantum Universe: Everything That Can Happen Does Happen


Brian Cox - 2011
    Cox and Forshaw's contention? There is no need for quantum mechanics to be viewed this way. There is a lot of mileage in the 'weirdness' of the quantum world, and it often leads to confusion and, frankly, bad science. The Quantum Universe cuts through the Wu Li and asks what observations of the natural world made it necessary, how it was constructed, and why we are confident that, for all its apparent strangeness, it is a good theory.The quantum mechanics of The Quantum Universe provide a concrete model of nature that is comparable in its essence to Newton’s laws of motion, Maxwell’s theory of electricity and magnetism, and Einstein’s theory of relativity.

From Here to Infinity: A Vision for the Future of Science


Martin J. Rees - 2011
    To shape debates over health care, energy policy, space travel, and other vital issues, ordinary citizens must engage directly with research rather than relying on pundits’ and politicians’ interpretations. Otherwise, fringe opinions that have been discredited in the scientific community can take hold in the public imagination. At the same time, scientists must understand their roles as communicators and ambassadors as well as researchers.Rees not only diagnoses this central problem but also explains how scientists and the general public can deploy a global, long-term perspective to address the new challenges we face. In the process, he reveals critical shortcomings in our current system—for example, the tendency to be overly anxious about minor hazards while underrating the risk of potential catastrophes. Offering a strikingly clear portrait of the future of science, Rees tackles such diverse topics as the human brain, the possibility that humans will colonize other planets, and the existence of extraterrestrial life in order to distinguish between what scientists can hope to discover and what will always lie beyond our grasp.A fresh perspective on science’s significance and potential, From Here to Infinity will inspire and enlighten.

Einstein's Theory of Relativity


Max Born - 1962
    This is such a book. Max Born is a Nobel Laureate (1955) and one of the world's great physicists: in this book he analyzes and interprets the theory of Einsteinian relativity. The result is undoubtedly the most lucid and insightful of all the books that have been written to explain the revolutionary theory that marked the end of the classical and the beginning of the modern era of physics.The author follows a quasi-historical method of presentation. The book begins with a review of the classical physics, covering such topics as origins of space and time measurements, geometric axioms, Ptolemaic and Copernican astronomy, concepts of equilibrium and force, laws of motion, inertia, mass, momentum and energy, Newtonian world system (absolute space and absolute time, gravitation, celestial mechanics, centrifugal forces, and absolute space), laws of optics (the corpuscular and undulatory theories, speed of light, wave theory, Doppler effect, convection of light by matter), electrodynamics (including magnetic induction, electromagnetic theory of light, electromagnetic ether, electromagnetic laws of moving bodies, electromagnetic mass, and the contraction hypothesis). Born then takes up his exposition of Einstein's special and general theories of relativity, discussing the concept of simultaneity, kinematics, Einstein's mechanics and dynamics, relativity of arbitrary motions, the principle of equivalence, the geometry of curved surfaces, and the space-time continuum, among other topics. Born then points out some predictions of the theory of relativity and its implications for cosmology, and indicates what is being sought in the unified field theory.This account steers a middle course between vague popularizations and complex scientific presentations. This is a careful discussion of principles stated in thoroughly acceptable scientific form, yet in a manner that makes it possible for the reader who has no scientific training to understand it. Only high school algebra has been used in explaining the nature of classical physics and relativity, and simple experiments and diagrams are used to illustrate each step. The layman and the beginning student in physics will find this an immensely valuable and usable introduction to relativity. This Dover 1962 edition was greatly revised and enlarged by Dr. Born.