Book picks similar to
Superstring Theory: Volume 1, Introduction by Michael B. Green
physics
mathematics
string-theory
science
Universe
Roger A. Freedman - 1998
It places the basics of astronomy and the process of science within the grasp of introductory students. Package Universe, Eighth Edition with FREE Starry Night CD!use Package ISBN 0-7167-9564-7 SPLIT VOLUMESIn addition to the complete 28-chapter version of Universe, two shorter versions are also available:Universe: The Solar System, Third Edition(Chapters 1-16 and 28)0-7167-9563-9; w/FREE Starry Night CD, 0-7167-9562-0Universe: Stars and Galaxies, Third Edition(Chapters 1-8 which includes a two-chapter overview of the solar system) and Chapters 16-28)0-7167-9561-2; w/FREE Starry Night CD, 0-7167-9565-5
The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots
Colin Conrad Adams - 1994
The study of knots has led to important applications in DNA research and the synthesis of new molecules, and has had a significant impact on statistical mechanics and quantum field theory. Colin Adams’s The Knot Book is the first book to make cutting-edge research in knot theory accessible to a non-specialist audience. Starting with the simplest knots, Adams guides readers through increasingly more intricate twists and turns of knot theory, exploring problems and theorems mathematicians can now solve, as well as those that remain open. He also explores how knot theory is providing important insights in biology, chemistry, physics, and other fields. The new paperback edition has been updated to include the latest research results, and includes hundreds of illustrations of knots, as well as worked examples, exercises and problems. With a simple piece of string, an elementary mathematical background, and The Knot Book, anyone can start learning about some of the most advanced ideas in contemporary mathematics.
Quantum Mechanics: Concepts and Applications
Nouredine Zettili - 2001
It combines the essential elements of the theory with the practical applications. Containing many examples and problems with step-by-step solutions, this cleverly structured text assists the reader in mastering the machinery of quantum mechanics. * A comprehensive introduction to the subject * Includes over 65 solved examples integrated throughout the text * Includes over 154 fully solved multipart problems * Offers an indepth treatment of the practical mathematical tools of quantum mechanics * Accessible to teachers as well as students
Differential Equations with Applications and Historical Notes
George F. Simmons - 1972
Simmons advocates a careful approach to the subject, covering such topics as the wave equation, Gauss's hypergeometric function, the gamma function and the basic problems of the calculus of variations in an explanatory fashions - ensuring that students fully understand and appreciate the topics.
Introductory Linear Algebra: An Applied First Course
Bernard Kolman - 1988
Calculus is not a prerequisite, although examples and exercises using very basic calculus are included (labeled Calculus Required.) The most technology-friendly text on the market, Introductory Linear Algebra is also the most flexible. By omitting certain sections, instructors can cover the essentials of linear algebra (including eigenvalues and eigenvectors), to show how the computer is used, and to introduce applications of linear algebra in a one-semester course.
First Light: Switching on Stars at the Dawn of Time
Emma Chapman - 2020
There's a lot for astronomers to be smug about. But when it comes to understanding how the Universe began and grew up we are literally in the dark ages. In effect, we are missing the first one billion years from the timeline of the Universe.This brief but far-reaching period in the Universe's history, known to astrophysicists as the 'Epoch of Reionisation', represents the start of the cosmos as we experience it today. The time when the very first stars burst into life, when darkness gave way to light. After hundreds of millions of years of dark, uneventful expansion, one by the one these stars suddenly came into being. This was the point at which the chaos of the Big Bang first began to yield to the order of galaxies, black holes and stars, kick-starting the pathway to planets, to comets, to moons, and to life itself.Incorporating the very latest research into this branch of astrophysics, this book sheds light on this time of darkness, telling the story of these first stars, hundreds of times the size of the Sun and a million times brighter, lonely giants that lived fast and died young in powerful explosions that seeded the Universe with the heavy elements that we are made of. Emma Chapman tells us how these stars formed, why they were so unusual, and what they can teach us about the Universe today. She also offers a first-hand look at the immense telescopes about to come on line to peer into the past, searching for the echoes and footprints of these stars, to take this period in the Universe's history from the realm of theoretical physics towards the wonder of observational astronomy.
Group Theory in the Bedroom, and Other Mathematical Diversions
Brian Hayes - 2008
(The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.
Einstein's Heroes: Imagining the World Through the Language of Mathematics
Robyn Arianrhod - 2004
Einstein's Heroes takes you on a journey of discovery about just such a miraculous language--the language of mathematics--one of humanity's mostamazing accomplishments. Blending science, history, and biography, this remarkable book reveals the mysteries of mathematics, focusing on the life and work of three of Albert Einstein's heroes: Isaac Newton, Michael Faraday, and especially James Clerk Maxwell, whose work directly inspired the theory of relativity. RobynArianrhod bridges the gap between science and literature, portraying mathematics as a language and arguing that a physical theory is a work of imagination involving the elegant and clever use of this language. The heart of the book illuminates how Maxwell, using the language of mathematics in a newand radical way, resolved the seemingly insoluble controversy between Faraday's idea of lines of force and Newton's theory of action-at-a-distance. In so doing, Maxwell not only produced the first complete mathematical description of electromagnetism, but actually predicted the existence of theradio wave, teasing it out of the mathematical language itself. Here then is a fascinating look at mathematics: its colorful characters, its historical intrigues, and above all its role as the uncannily accurate language of nature.
Turing and the Computer
Paul Strathern - 1997
Without a doubt, the development of the computer was a massive leap forward in humankind's progress and will stand as one of the twentieth century's greatest achievements. But how many of us know how it really works? "Turing And The Computer" offers a brilliant encapsulation of the groundwork that led to the invention of the computer as we know it, and an absorbing account of the man who helped develop it, only to be largely forgotten after his death. Eccentric and principled, Turing would lay aside a brilliant career in mathematics to serve his country by breaking German codes during the Second World War. Openly homosexual, he would later be put on trial on indecency charges and forced to undergo hormone treatments that wrecked his body and his spirit. But the modern machine he helped create lives on.Concise and thoroughly compelling, "Turing And The Computer" is for all those curious about the philosophy and mechanics behind the now indispensable computer, and for anyone awed by the spark of invention that inspires its birth.
Where Does The Weirdness Go?: Why Quantum Mechanics Is Strange, But Not As Strange As You Think
David Lindley - 1996
Everyday experience cannot prepare us for the sub-atomic world, where quantum effects become all-important. Here, particles can look like waves, and vice versa; electrons seem to lose their identity and instead take on a shifting, unpredictable appearance that depends on how they are being observed; and a single photon may sometimes behave as if it could be in two places at once. In the world of quantum mechanics, uncertainty and ambiguity become not just unavoidable, but essential ingredients of science -- a development so disturbing that to Einstein "it was as if God were playing dice with the universe." And there is no one better able to explain the quantum revolution as it approaches the century mark than David Lindley. He brings the quantum revolution full circle, showing how the familiar and trustworthy reality of the world around us is actually a consequence of the ineffable uncertainty of the subatomic quantum world -- the world we can't see.
Cosmic Blueprint: New Discoveries In Natures Ability To Order Universe
Paul C.W. Davies - 1988
He explores the new paradigm (replacing the centuries-old Newtonian view of the universe) that recognizes the collective and holistic properties of physical systems and the power of self-organization. He casts the laws in physics in the role of a "blueprint," embodying a grand cosmic scheme that progressively unfolds as the universe develops.Challenging the viewpoint that the physical universe is a meaningless collection particles, he finds overwhelming evidence for an underlying purpose: "Science may explain all the processes whereby the universe evolves its own destiny, but that still leaves room for there to be a meaning behind existence."
Edge of the Universe A Voyage to the Cosmic Horizon and Beyond
Paul Halpern - 2012
Yet recent theories suggest that there is far more to the universe than what our instruments record--in fact, it could be infinite. Colossal flows of galaxies, large empty regions called voids, and other unexplained phenomena offer clues that our own "bubble universe" could be part of a greater realm called the multiverse. How big is the observable universe? What it is made of? What lies beyond it? Was there a time before the Big Bang? Could space have unseen dimensions? In this book, physicist and science writer Paul Halpern explains what we know--and what we hope to soon find out--about our extraordinary cosmos.Explains what we know about the Big Bang, the accelerating universe, dark energy, dark flow, and dark matter to examine some of the theories about the content of the universe and why its edge is getting farther away from us fasterExplores the idea that the observable universe could be a hologram and that everything that happens within it might be written on its edgeWritten by physicist and popular science writer Paul Halpern, whose other books include "Collider: The Search for the World's Smallest Particles," and "What's Science Ever Done For Us: What the Simpsons Can Teach Us About Physics, Robots, Life, and the Universe"
Quantum Physics for Beginners in 90 Minutes without Math: All the Major Ideas of Quantum Mechanics, from Quanta to Entanglement, in Simple Language
Modern Science - 2017
This behavior is very much different from what we humans are used to dealing with in our everyday lives, so naturally this subject is quite hard to comprehend for many. We believed that the best way to introduce the subject reliably is to start at the beginning, presenting the observations, thoughts and conclusions of each of the world’s greatest physicists through their eyes, one at a time. In this way we hope that the reader may take an enjoyable journey through the strange truths of quantum theory and understand why the conclusions of these great minds are what they are. This book starts with the most general view of the world and gradually leads readers to those new, unbelievable but real facts about the very nature of our universe.
What Is Mathematics?: An Elementary Approach to Ideas and Methods
Richard Courant - 1941
Today, unfortunately, the traditional place of mathematics in education is in grave danger. The teaching and learning of mathematics has degenerated into the realm of rote memorization, the outcome of which leads to satisfactory formal ability but does not lead to real understanding or to greater intellectual independence. This new edition of Richard Courant's and Herbert Robbins's classic work seeks to address this problem. Its goal is to put the meaning back into mathematics.Written for beginners and scholars, for students and teachers, for philosophers and engineers, What is Mathematics? Second Edition is a sparkling collection of mathematical gems that offers an entertaining and accessible portrait of the mathematical world. Covering everything from natural numbers and the number system to geometrical constructions and projective geometry, from topology and calculus to matters of principle and the Continuum Hypothesis, this fascinating survey allows readers to delve into mathematics as an organic whole rather than an empty drill in problem solving. With chapters largely independent of one another and sections that lead upward from basic to more advanced discussions, readers can easily pick and choose areas of particular interest without impairing their understanding of subsequent parts.Brought up to date with a new chapter by Ian Stewart, What is Mathematics? Second Edition offers new insights into recent mathematical developments and describes proofs of the Four-Color Theorem and Fermat's Last Theorem, problems that were still open when Courant and Robbins wrote this masterpiece, but ones that have since been solved.Formal mathematics is like spelling and grammar - a matter of the correct application of local rules. Meaningful mathematics is like journalism - it tells an interesting story. But unlike some journalism, the story has to be true. The best mathematics is like literature - it brings a story to life before your eyes and involves you in it, intellectually and emotionally. What is Mathematics is like a fine piece of literature - it opens a window onto the world of mathematics for anyone interested to view.