Book picks similar to
Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies by John D. Kelleher
machine-learning
data-science
computer-science
science
The C Programming Language
Brian W. Kernighan - 1978
It is the definitive reference guide, now in a second edition. Although the first edition was written in 1978, it continues to be a worldwide best-seller. This second edition brings the classic original up to date to include the ANSI standard. From the Preface: We have tried to retain the brevity of the first edition. C is not a big language, and it is not well served by a big book. We have improved the exposition of critical features, such as pointers, that are central to C programming. We have refined the original examples, and have added new examples in several chapters. For instance, the treatment of complicated declarations is augmented by programs that convert declarations into words and vice versa. As before, all examples have been tested directly from the text, which is in machine-readable form. As we said in the first preface to the first edition, C "wears well as one's experience with it grows." With a decade more experience, we still feel that way. We hope that this book will help you to learn C and use it well.
Coders at Work: Reflections on the Craft of Programming
Peter Seibel - 2009
As the words "at work" suggest, Peter Seibel focuses on how his interviewees tackle the day–to–day work of programming, while revealing much more, like how they became great programmers, how they recognize programming talent in others, and what kinds of problems they find most interesting. Hundreds of people have suggested names of programmers to interview on the Coders at Work web site: http://www.codersatwork.com. The complete list was 284 names. Having digested everyone’s feedback, we selected 16 folks who’ve been kind enough to agree to be interviewed:- Frances Allen: Pioneer in optimizing compilers, first woman to win the Turing Award (2006) and first female IBM fellow- Joe Armstrong: Inventor of Erlang- Joshua Bloch: Author of the Java collections framework, now at Google- Bernie Cosell: One of the main software guys behind the original ARPANET IMPs and a master debugger- Douglas Crockford: JSON founder, JavaScript architect at Yahoo!- L. Peter Deutsch: Author of Ghostscript, implementer of Smalltalk-80 at Xerox PARC and Lisp 1.5 on PDP-1- Brendan Eich: Inventor of JavaScript, CTO of the Mozilla Corporation - Brad Fitzpatrick: Writer of LiveJournal, OpenID, memcached, and Perlbal - Dan Ingalls: Smalltalk implementor and designer- Simon Peyton Jones: Coinventor of Haskell and lead designer of Glasgow Haskell Compiler- Donald Knuth: Author of The Art of Computer Programming and creator of TeX- Peter Norvig: Director of Research at Google and author of the standard text on AI- Guy Steele: Coinventor of Scheme and part of the Common Lisp Gang of Five, currently working on Fortress- Ken Thompson: Inventor of UNIX- Jamie Zawinski: Author of XEmacs and early Netscape/Mozilla hackerWhat you’ll learn:How the best programmers in the world do their jobWho is this book for?Programmers interested in the point of view of leaders in the field. Programmers looking for approaches that work for some of these outstanding programmers.
Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures
Claus O. Wilke - 2019
But with the increasing power of visualization software today, scientists, engineers, and business analysts often have to navigate a bewildering array of visualization choices and options.This practical book takes you through many commonly encountered visualization problems, and it provides guidelines on how to turn large datasets into clear and compelling figures. What visualization type is best for the story you want to tell? How do you make informative figures that are visually pleasing? Author Claus O. Wilke teaches you the elements most critical to successful data visualization.Explore the basic concepts of color as a tool to highlight, distinguish, or represent a valueUnderstand the importance of redundant coding to ensure you provide key information in multiple waysUse the book's visualizations directory, a graphical guide to commonly used types of data visualizationsGet extensive examples of good and bad figuresLearn how to use figures in a document or report and how employ them effectively to tell a compelling story
Visualize This: The FlowingData Guide to Design, Visualization, and Statistics
Nathan Yau - 2011
Wouldn't it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to gather, parse, and format data and then design high quality graphics that help you explore and present patterns, outliers, and relationships.Presents a unique approach to visualizing and telling stories with data, from a data visualization expert and the creator of flowingdata.com, Nathan Yau Offers step-by-step tutorials and practical design tips for creating statistical graphics, geographical maps, and information design to find meaning in the numbers Details tools that can be used to visualize data-native graphics for the Web, such as ActionScript, Flash libraries, PHP, and JavaScript and tools to design graphics for print, such as R and Illustrator Contains numerous examples and descriptions of patterns and outliers and explains how to show them Visualize This demonstrates how to explain data visually so that you can present your information in a way that is easy to understand and appealing.
R for Everyone: Advanced Analytics and Graphics
Jared P. Lander - 2013
R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you'll need to accomplish 80 percent of modern data tasks. Lander's self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You'll download and install R; navigate and use the R environment; master basic program control, data import, and manipulation; and walk through several essential tests. Then, building on this foundation, you'll construct several complete models, both linear and nonlinear, and use some data mining techniques. By the time you're done, you won't just know how to write R programs, you'll be ready to tackle the statistical problems you care about most. COVERAGE INCLUDES - Exploring R, RStudio, and R packages - Using R for math: variable types, vectors, calling functions, and more - Exploiting data structures, including data.frames, matrices, and lists - Creating attractive, intuitive statistical graphics - Writing user-defined functions - Controlling program flow with if, ifelse, and complex checks - Improving program efficiency with group manipulations - Combining and reshaping multiple datasets - Manipulating strings using R's facilities and regular expressions - Creating normal, binomial, and Poisson probability distributions - Programming basic statistics: mean, standard deviation, and t-tests - Building linear, generalized linear, and nonlinear models - Assessing the quality of models and variable selection - Preventing overfitting, using the Elastic Net and Bayesian methods - Analyzing univariate and multivariate time series data - Grouping data via K-means and hierarchical clustering - Preparing reports, slideshows, and web pages with knitr - Building reusable R packages with devtools and Rcpp - Getting involved with the R global community
Big Data in Practice: How 45 Successful Companies Used Big Data Analytics to Deliver Extraordinary Results
Bernard Marr - 2016
Big data is on the tip of everyone's tongue. Everyone understands its power and importance, but many fail to grasp the actionable steps and resources required to utilise it effectively. This book fills the knowledge gap by showing how major companies are using big data every day, from an up-close, on-the-ground perspective. From technology, media and retail, to sport teams, government agencies and financial institutions, learn the actual strategies and processes being used to learn about customers, improve manufacturing, spur innovation, improve safety and so much more. Organised for easy dip-in navigation, each chapter follows the same structure to give you the information you need quickly. For each company profiled, learn what data was used, what problem it solved and the processes put it place to make it practical, as well as the technical details, challenges and lessons learned from each unique scenario. Learn how predictive analytics helps Amazon, Target, John Deere and Apple understand their customers Discover how big data is behind the success of Walmart, LinkedIn, Microsoft and more Learn how big data is changing medicine, law enforcement, hospitality, fashion, science and banking Develop your own big data strategy by accessing additional reading materials at the end of each chapter
Programming Perl
Tom Christiansen - 1991
The first edition of this book, Programming Perl, hit the shelves in 1990, and was quickly adopted as the undisputed bible of the language. Since then, Perl has grown with the times, and so has this book.Programming Perl is not just a book about Perl. It is also a unique introduction to the language and its culture, as one might expect only from its authors. Larry Wall is the inventor of Perl, and provides a unique perspective on the evolution of Perl and its future direction. Tom Christiansen was one of the first champions of the language, and lives and breathes the complexities of Perl internals as few other mortals do. Jon Orwant is the editor of The Perl Journal, which has brought together the Perl community as a common forum for new developments in Perl.Any Perl book can show the syntax of Perl's functions, but only this one is a comprehensive guide to all the nooks and crannies of the language. Any Perl book can explain typeglobs, pseudohashes, and closures, but only this one shows how they really work. Any Perl book can say that my is faster than local, but only this one explains why. Any Perl book can have a title, but only this book is affectionately known by all Perl programmers as "The Camel."This third edition of Programming Perl has been expanded to cover version 5.6 of this maturing language. New topics include threading, the compiler, Unicode, and other new features that have been added since the previous edition.
Mastering Bitcoin: Unlocking Digital Cryptocurrencies
Andreas M. Antonopoulos - 2014
Whether you're building the next killer app, investing in a startup, or simply curious about the technology, this practical book is essential reading.Bitcoin, the first successful decentralized digital currency, is still in its infancy and it's already spawned a multi-billion dollar global economy. This economy is open to anyone with the knowledge and passion to participate. Mastering Bitcoin provides you with the knowledge you need (passion not included).This book includes:A broad introduction to bitcoin--ideal for non-technical users, investors, and business executivesAn explanation of the technical foundations of bitcoin and cryptographic currencies for developers, engineers, and software and systems architectsDetails of the bitcoin decentralized network, peer-to-peer architecture, transaction lifecycle, and security principlesOffshoots of the bitcoin and blockchain inventions, including alternative chains, currencies, and applicationsUser stories, analogies, examples, and code snippets illustrating key technical concepts
Refactoring: Improving the Design of Existing Code
Martin Fowler - 1999
Significant numbers of poorly designed programs have been created by less-experienced developers, resulting in applications that are inefficient and hard to maintain and extend. Increasingly, software system professionals are discovering just how difficult it is to work with these inherited, non-optimal applications. For several years, expert-level object programmers have employed a growing collection of techniques to improve the structural integrity and performance of such existing software programs. Referred to as refactoring, these practices have remained in the domain of experts because no attempt has been made to transcribe the lore into a form that all developers could use... until now. In Refactoring: Improving the Design of Existing Software, renowned object technology mentor Martin Fowler breaks new ground, demystifying these master practices and demonstrating how software practitioners can realize the significant benefits of this new process.
Introduction to the Theory of Computation
Michael Sipser - 1996
Sipser's candid, crystal-clear style allows students at every level to understand and enjoy this field. His innovative "proof idea" sections explain profound concepts in plain English. The new edition incorporates many improvements students and professors have suggested over the years, and offers updated, classroom-tested problem sets at the end of each chapter.
Python in a Nutshell
Alex Martelli - 2003
Demonstrates the programming language's strength as a Web development tool, covering syntax, data types, built-ins, the Python standard module library, and real world examples
Architects of Intelligence: The truth about AI from the people building it
Martin Ford - 2018
of Toronto and Google), Rodney Brooks (Rethink Robotics), Yann LeCun (Facebook) , Fei-Fei Li (Stanford and Google), Yoshua Bengio (Univ. of Montreal), Andrew Ng (AI Fund), Daphne Koller (Stanford), Stuart Russell (UC Berkeley), Nick Bostrom (Univ. of Oxford), Barbara Grosz (Harvard), David Ferrucci (Elemental Cognition), James Manyika (McKinsey), Judea Pearl (UCLA), Josh Tenenbaum (MIT), Rana el Kaliouby (Affectiva), Daniela Rus (MIT), Jeff Dean (Google), Cynthia Breazeal (MIT), Oren Etzioni (Allen Institute for AI), Gary Marcus (NYU), and Bryan Johnson (Kernel).Martin Ford is a prominent futurist, and author of Financial Times Business Book of the Year, Rise of the Robots. He speaks at conferences and companies around the world on what AI and automation might mean for the future. Editorial reviews: "In his newest book, Architects of Intelligence, Martin Ford provides us with an invaluable opportunity to learn from some of the most prominent thought leaders about the emerging fields of science that are shaping our future."
-Al Gore, Former Vice President of the US
"AI is going to shape our future, and Architects of Intelligence offers a unique and fascinating collection of perspectives from the top researchers and entrepreneurs who are driving progress in the field."
- Eric Schmidt, former Chairman and CEO, Google
"The best way to understand the challenges and consequences of AGI is to see inside the minds of industry experts shaping the field. Architects of Intelligence gives you that power."
-Sam Altman, President of Y Combinator and co-chairman of OpenAI
"Architects of Intelligence gets you inside the minds of the people building the technology that is going to transform our world. This is a book that everyone should read."
-Reid Hoffman, Co-founder of LinkedIn
How Linux Works: What Every Superuser Should Know
Brian Ward - 2004
Some books try to give you copy-and-paste instructions for how to deal with every single system issue that may arise, but How Linux Works actually shows you how the Linux system functions so that you can come up with your own solutions. After a guided tour of filesystems, the boot sequence, system management basics, and networking, author Brian Ward delves into open-ended topics such as development tools, custom kernels, and buying hardware, all from an administrator's point of view. With a mixture of background theory and real-world examples, this book shows both "how" to administer Linux, and "why" each particular technique works, so that you will know how to make Linux work for you.
The Psychology of Computer Programming
Gerald M. Weinberg - 1971
Weinberg adds new insights and highlights the similarities and differences between now and then. Using a conversational style that invites the reader to join him, Weinberg reunites with some of his most insightful writings on the human side of software engineering.Topics include egoless programming, intelligence, psychological measurement, personality factors, motivation, training, social problems on large projects, problem-solving ability, programming language design, team formation, the programming environment, and much more.Dorset House Publishing is proud to make this important text available to new generations of programmers -- and to encourage readers of the first edition to return to its valuable lessons.
A New Kind of Science
Stephen Wolfram - 1997
Wolfram lets the world see his work in A New Kind of Science, a gorgeous, 1,280-page tome more than a decade in the making. With patience, insight, and self-confidence to spare, Wolfram outlines a fundamental new way of modeling complex systems. On the frontier of complexity science since he was a boy, Wolfram is a champion of cellular automata--256 "programs" governed by simple nonmathematical rules. He points out that even the most complex equations fail to accurately model biological systems, but the simplest cellular automata can produce results straight out of nature--tree branches, stream eddies, and leopard spots, for instance. The graphics in A New Kind of Science show striking resemblance to the patterns we see in nature every day. Wolfram wrote the book in a distinct style meant to make it easy to read, even for nontechies; a basic familiarity with logic is helpful but not essential. Readers will find themselves swept away by the elegant simplicity of Wolfram's ideas and the accidental artistry of the cellular automaton models. Whether or not Wolfram's revolution ultimately gives us the keys to the universe, his new science is absolutely awe-inspiring. --Therese Littleton