Introduction to Chemical Engineering Thermodynamics


J.M. Smith - 2010
    This text provides a thorough exposition of the principles of thermodynamics and details their application to chemical processes. The new edition has been updated to reflect the growth in such areas as materials and electrochemicals.

A Mathematician's Lament: How School Cheats Us Out of Our Most Fascinating and Imaginative Art Form


Paul Lockhart - 2009
    Witty and accessible, Paul Lockhart’s controversial approach will provoke spirited debate among educators and parents alike and it will alter the way we think about math forever.Paul Lockhart, has taught mathematics at Brown University and UC Santa Cruz. Since 2000, he has dedicated himself to K-12 level students at St. Ann’s School in Brooklyn, New York.

Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension


Michio Kaku - 1994
    Indeed, many physicists today believe that there are other dimensions beyond the four of our space-time, and that a unified vision of the various forces of nature can be achieved, if we consider that everything we see around us, from the trees to the stars are nothing but vibrations in hyperspace. Hyperspace theory - and its more recent derivation, superstring theory - is the eye of this revolution. In this book, Michio Kaku shows us a fascinating panorama, which completely changes our view of the cosmos, and takes us on a dazzling journey through new dimensions: wormholes connecting parallel universes, time machines, "baby universes" and more. Similar wonders are emerging in some pages in which everything is explained with elegant simplicity and where the mathematical formulation is replaced by imaginative illustrations that allow the problems to be visualized. The result is a very entertaining and surprising book, which even leaves behind the greatest fantasies of the old science fiction authors.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

Discrete Mathematics


Richard Johnsonbaugh - 1984
    Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.

Introductory Linear Algebra: An Applied First Course


Bernard Kolman - 1988
    Calculus is not a prerequisite, although examples and exercises using very basic calculus are included (labeled Calculus Required.) The most technology-friendly text on the market, Introductory Linear Algebra is also the most flexible. By omitting certain sections, instructors can cover the essentials of linear algebra (including eigenvalues and eigenvectors), to show how the computer is used, and to introduce applications of linear algebra in a one-semester course.

Fluid Mechanics


Pijush K. Kundu - 1990
    New to this third edition are expanded coverage of such important topics as surface boundary interfaces, improved discussions of such physical and mathematical laws as the Law of Biot and Savart and the Euler Momentum Integral. A very important new section on Computational Fluid Dynamics has been added for the very first time to this edition. Expanded and improved end-of-chapter problems will facilitate the teaching experience for students and instrutors alike. This book remains one of the most comprehensive and useful texts on fluid mechanics available today, with applications going from engineering to geophysics, and beyond to biology and general science. * Ample, useful end-of-chapter problems.* Excellent Coverage of Computational Fluid Dynamics.* Coverage of Turbulent Flows.* Solutions Manual available.

Quantum Computing Since Democritus


Scott Aaronson - 2013
    Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics. Beginning in antiquity with Democritus, it progresses through logic and set theory, computability and complexity theory, quantum computing, cryptography, the information content of quantum states and the interpretation of quantum mechanics. There are also extended discussions about time travel, Newcomb's Paradox, the anthropic principle and the views of Roger Penrose. Aaronson's informal style makes this fascinating book accessible to readers with scientific backgrounds, as well as students and researchers working in physics, computer science, mathematics and philosophy.

Algorithms


Sanjoy Dasgupta - 2006
    Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University

A First Course in General Relativity


Bernard F. Schutz - 1985
    This textbook, based on the author's own undergraduate teaching, develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth. It reinforces this understanding by making a detailed study of the theory's most important applications - neutron stars, black holes, gravitational waves, and cosmology - using the most up-to-date astronomical developments. The book is suitable for a one-year course for beginning graduate students or for undergraduates in physics who have studied special relativity, vector calculus, and electrostatics. Graduate students should be able to use the book selectively for half-year courses.

e: the Story of a Number


Eli Maor - 1993
    Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest mathematical background, this biography brings out the central importance of e to mathematics and illuminates a golden era in the age of science.

Lost in Math: How Beauty Leads Physics Astray


Sabine Hossenfelder - 2018
    Whether pondering black holes or predicting discoveries at CERN, physicists believe the best theories are beautiful, natural, and elegant, and this standard separates popular theories from disposable ones. This is why, Sabine Hossenfelder argues, we have not seen a major breakthrough in the foundations of physics for more than four decades. The belief in beauty has become so dogmatic that it now conflicts with scientific objectivity: observation has been unable to confirm mindboggling theories, like supersymmetry or grand unification, invented by physicists based on aesthetic criteria. Worse, these "too good to not be true" theories are actually untestable and they have left the field in a cul-de-sac. To escape, physicists must rethink their methods. Only by embracing reality as it is can science discover the truth.

Quantum Physics: A Beginner's Guide


Alastair I.M. Rae - 2005
    Drawing on a wealth of expertise to explain just what a fascinating field quantum physics is, Rae points out that it is not simply a maze of technical jargon and philosophical ideas, but a reality which affects our daily lives.

Schaum's Outline of Linear Algebra


Seymour Lipschutz - 1968
    This guide provides explanations of eigenvalues, eigenvectors, linear transformations, linear equations, vectors, and matrices.

Elements of Information Theory


Thomas M. Cover - 1991
    Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.