Book picks similar to
First-Order Logic and Automated Theorem Proving by Melvin Fitting
logic
favorites
منطق-و-ریاضی
computer-science
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Principia Mathematica to '56
Alfred North Whitehead - 1913
Its aim is to deduce all the fundamental propositions of logic and mathematics from a small number of logical premises and primitive ideas, establishing that mathematics is a development of logic. This abridged text of Volume I contains the material that is most relevant to an introductory study of logic and the philosophy of mathematics (more advanced students will of course wish to refer to the complete edition). It contains the whole of the preliminary sections (which present the authors' justification of the philosophical standpoint adopted at the outset of their work); the whole of Part I (in which the logical properties of propositions, propositional functions, classes and relations are established); section A of Part II (dealing with unit classes and couples); and Appendices A and C (which give further developments of the argument on the theory of deduction and truth functions).
Think Python
Allen B. Downey - 2002
It covers the basics of computer programming, including variables and values, functions, conditionals and control flow, program development and debugging. Later chapters cover basic algorithms and data structures.
Complex Adaptive Systems: An Introduction to Computational Models of Social Life
John H. Miller - 2007
Such systems--whether political parties, stock markets, or ant colonies--present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations, Complex Adaptive Systems focuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. It provides a detailed introduction to concepts such as emergence, self-organized criticality, automata, networks, diversity, adaptation, and feedback. It also demonstrates how complex adaptive systems can be explored using methods ranging from mathematics to computational models of adaptive agents. John Miller and Scott Page show how to combine ideas from economics, political science, biology, physics, and computer science to illuminate topics in organization, adaptation, decentralization, and robustness. They also demonstrate how the usual extremes used in modeling can be fruitfully transcended.
Growing Artificial Societies: Social Science from the Bottom Up
Joshua M. Epstein - 1994
Epstein and Robert L. Axtell approach this age-old question with cutting-edge computer simulation techniques. Such fundamental collective behaviors as group formation, cultural transmission, combat, and trade are seen to "emerge" from the interaction of individual agents following simple local rules.In their computer model, Epstein and Axtell begin the development of a "bottom up" social science. Their program, named Sugarscape, simulates the behavior of artificial people (agents) located on a landscape of a generalized resource (sugar). Agents are born onto the Sugarscape with a vision, a metabolism, a speed, and other genetic attributes. Their movement is governed by a simple local rule: "look around as far as you can; find the spot with the most sugar; go there and eat the sugar." Every time an agent moves, it burns sugar at an amount equal to its metabolic rate. Agents die if and when they burn up all their sugar. A remarkable range of social phenomena emerge. For example, when seasons are introduced, migration and hibernation can be observed. Agents are accumulating sugar at all times, so there is always a distribution of wealth.Next, Epstein and Axtell attempt to grow a "proto-history" of civilization. It starts with agents scattered about a twin-peaked landscape; over time, there is self-organization into spatially segregated and culturally distinct "tribes" centered on the peaks of the Sugarscape. Population growth forces each tribe to disperse into the sugar lowlands between the mountains. There, the two tribes interact, engaging in combat and competing for cultural dominance, to produce complex social histories with violent expansionist phases, peaceful periods, and so on. The proto-history combines a number of ingredients, each of which generates insights of its own. One of these ingredients is sexual reproduction. In some runs, the population becomes thin, birth rates fall, and the population can crash. Alternatively, the agents may over-populate their environment, driving it into ecological collapse.When Epstein and Axtell introduce a second resource (spice) to the Sugarscape and allow the agents to trade, an economic market emerges. The introduction of pollution resulting from resource-mining permits the study of economic markets in the presence of environmental factors.This study is part of the 2050 Project, a joint venture of the Santa Fe Institute, the World Resources Institute, and the Brookings Institution. The project is an international effort to identify conditions for a sustainable global system in the middle of the next century and to design policy actions to help achieve such a system.
Multiple View Geometry in Computer Vision
Richard Hartley - 2000
This book covers relevant geometric principles and how to represent objects algebraically so they can be computed and applied. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. Richard Hartley and Andrew Zisserman provide comprehensive background material and explain how to apply the methods and implement the algorithms. First Edition HB (2000): 0-521-62304-9
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
The Art of Problem Solving, Volume 1: The Basics
Sandor Lehoczky - 2006
The Art of Problem Solving, Volume 1, is the classic problem solving textbook used by many successful MATHCOUNTS programs, and have been an important building block for students who, like the authors, performed well enough on the American Mathematics Contest series to qualify for the Math Olympiad Summer Program which trains students for the United States International Math Olympiad team.Volume 1 is appropriate for students just beginning in math contests. MATHCOUNTS and novice high school students particularly have found it invaluable. Although the Art of Problem Solving is widely used by students preparing for mathematics competitions, the book is not just a collection of tricks. The emphasis on learning and understanding methods rather than memorizing formulas enables students to solve large classes of problems beyond those presented in the book.Speaking of problems, the Art of Problem Solving, Volume 1, contains over 500 examples and exercises culled from such contests as MATHCOUNTS, the Mandelbrot Competition, the AMC tests, and ARML. Full solutions (not just answers!) are available for all the problems in the solution manual.
HTML Pocket Reference
Jennifer Niederst Robbins - 1999
In this pocket reference, Jennifer Niederst, the author of the best-selling Web Design in a Nutshell, delivers a concise guide to every HTML tag.Each tag entry includes:Detailed information on the tag's attributes Support information on browsers such as Netscape Navigator, Microsoft Internet Explorer, Opera, and WebTV HTML 4.0 support information, including whether the tag is deprecated in the current spec In addition to tag-by-tag descriptions, you'll find useful charts on such topics as:Character entities Decimal-to-hexadecimal conversions Color names Niederst also provides context for the tags, indicating which tags are grouped together and bare-bones examples of how standard web page elements are constructed.This pocket reference is targeted at web designers and web authors and is likely to be the most dog-eared book on every web professional's desk.
How to Solve It: Modern Heuristics
Zbigniew Michalewicz - 2004
Publilius Syrus, Moral Sayings We've been very fortunate to receive fantastic feedback from our readers during the last four years, since the first edition of How to Solve It: Modern Heuristics was published in 1999. It's heartening to know that so many people appreciated the book and, even more importantly, were using the book to help them solve their problems. One professor, who published a review of the book, said that his students had given the best course reviews he'd seen in 15 years when using our text. There can be hardly any better praise, except to add that one of the book reviews published in a SIAM journal received the best review award as well. We greatly appreciate your kind words and personal comments that you sent, including the few cases where you found some typographical or other errors. Thank you all for this wonderful support.
Philosophy of Mathematics: Selected Readings
Paul Benacerraf - 1983
In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Godel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.
Computer Networks
Andrew S. Tanenbaum - 1981
In this revision, the author takes a structured approach to explaining how networks function.
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.