The Art of Doing Science and Engineering: Learning to Learn


Richard Hamming - 1996
    By presenting actual experiences and analyzing them as they are described, the author conveys the developmental thought processes employed and shows a style of thinking that leads to successful results is something that can be learned. Along with spectacular successes, the author also conveys how failures contributed to shaping the thought processes. Provides the reader with a style of thinking that will enhance a person's ability to function as a problem-solver of complex technical issues. Consists of a collection of stories about the author's participation in significant discoveries, relating how those discoveries came about and, most importantly, provides analysis about the thought processes and reasoning that took place as the author and his associates progressed through engineering problems.

SEO Made Simple: Strategies for Dominating the World's Largest Search Engine


Michael H. Fleischner - 2008
    Visit the SEO Made Simple (fourth edition) page for more information. http: //www.amazon.com/SEO-Made-Simple-4th-Ed... More Than 30,000 Copies Sold! The original SEO Made Simple: Strategies for Dominating the World's Leading Search Engine, is a tell-all guide for anyone trying to reach the highly coveted #1 ranking on Google for their Web site or Blog. Learn from a leading Webmaster the specific SEO techniques that deliver top rankings in less than 30 days. Whether you're a search engine optimization expert or new to Web site rankings, the techniques revealed in SEO Made Simple will give you everything you need to dominate the leading search engines. Generate tons of traffic to your website absolutely FREE with top search engine placement on Google, Yahoo! and MSN. SEO Made Simple is the only resource on search engine optimization that you'll ever need.

Balanced Scorecards and Operational Dashboards with Microsoft Excel


Ron Person - 2008
    This book serves as the first guide to focus on combining the benefits of balanced scorecards, operational dashboards, performance managements, and data visualization and then implement them in Microsoft Excel.

Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management


Michael J.A. Berry - 1997
    Packed with more than forty percent new and updated material, this edition shows business managers, marketing analysts, and data mining specialists how to harness fundamental data mining methods and techniques to solve common types of business problemsEach chapter covers a new data mining technique, and then shows readers how to apply the technique for improved marketing, sales, and customer supportThe authors build on their reputation for concise, clear, and practical explanations of complex concepts, making this book the perfect introduction to data miningMore advanced chapters cover such topics as how to prepare data for analysis and how to create the necessary infrastructure for data miningCovers core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, clustering, and survival analysis

Big Data Now: Current Perspectives from O'Reilly Radar


O'Reilly Radar Team - 2011
    Mike Loukides kicked things off in June 2010 with “What is data science?” and from there we’ve pursued the various threads and themes that naturally emerged. Now, roughly a year later, we can look back over all we’ve covered and identify a number of core data areas: Data issues -- The opportunities and ambiguities of the data space are evident in discussions around privacy, the implications of data-centric industries, and the debate about the phrase “data science” itself. The application of data: products and processes – A “data product” can emerge from virtually any domain, including everything from data startups to established enterprises to media/journalism to education and research. Data science and data tools -- The tools and technologies that drive data science are of course essential to this space, but the varied techniques being applied are also key to understanding the big data arena.The business of data – Take a closer look at the actions connected to data -- the finding, organizing, and analyzing that provide organizations of all sizes with the information they need to compete.

It Doesn't Have to Be Crazy at Work


Jason Fried - 2018
    Now, they build on their message with a bold, iconoclastic strategy for creating the ideal company culture—what they call "the calm company." Their approach directly attack the chaos, anxiety, and stress that plagues millions of workplaces and hampers billions of workers every day.Long hours, an excessive workload, and a lack of sleep have become a badge of honor for modern professionals. But it should be a mark of stupidity, the authors argue. Sadly, this isn’t just a problem for large organizations—individuals, contractors, and solopreneurs are burning themselves out the same way. The answer to better productivity isn’t more hours—it’s less waste and fewer things that induce distraction and persistent stress.It’s time to stop celebrating Crazy, and start celebrating Calm, Fried and Hansson assert.Fried and Hansson have the proof to back up their argument. "Calm" has been the cornerstone of their company’s culture since Basecamp began twenty years ago. Destined to become the management guide for the next generation, It Doesn't Have to Be Crazy at Work is a practical and inspiring distillation of their insights and experiences. It isn’t a book telling you what to do. It’s a book showing you what they’ve done—and how any manager or executive no matter the industry or size of the company, can do it too.

The Start-Up of You: Adapt to the Future, Invest in Yourself, and Transform Your Career


Reid Hoffman - 2012
    The career escalator is jammed at every level. Unemployment rates are sky-high. Creative disruption is shaking every industry. Global competition for jobs is fierce. The employer-employee pact is over, and traditional job security is a thing of the past. Here, LinkedIn cofounder and chairman Reid Hoffman and author Ben Casnocha show how to accelerate your career in today’s competitive world. The key is to manage your career as if it were a start-up business: a living, breathing, growing start-up of you. Why? Start-ups - and the entrepreneurs who run them - are nimble. They invest in themselves. They build their professional networks. They take intelligent risks. They make uncertainty and volatility work to their advantage. These are the very same skills professionals need to get ahead today. This book isn’t about cover letters or resumes. Instead, you will learn the best practices of Silicon Valley start-ups, and how to apply these entrepreneurial strategies to your career. Whether you work for a giant multinational corporation, a small local business, or are launching your own venture, you need to know how to: Adapt your career plans as you change, the people around you change, and industries change Develop a competitive advantage to win the best jobs and opportunities Strengthen your professional network by building powerful alliances and maintaining a diverse mix of relationships Find the unique breakout opportunities that massively accelerate career growth Take proactive risks to become more resilient to industry tsunamis Tap your network for information and intelligence that help you make smarter decisions A revolutionary new guide to thriving in today's fractured world of work, the strategies in this book will help you survive and thrive and achieve your boldest professional ambitions. The Start-Up of You empowers you to become the CEO of your career and take control of your future.©2012 Reid Hoffman (P)2012 Random House

In the Plex: How Google Thinks, Works, and Shapes Our Lives


Steven Levy - 2011
    How has Google done it? Veteran technology reporter Steven Levy was granted unprecedented access to the company, and in this revelatory book he takes readers inside Google headquarters—the Googleplex—to show how Google works.While they were still students at Stanford, Google cofounders Larry Page and Sergey Brin revolutionized Internet search. They followed this brilliant innovation with another, as two of Google’s earliest employees found a way to do what no one else had: make billions of dollars from Internet advertising. With this cash cow, Google was able to expand dramatically and take on other transformative projects: more efficient data centers, open-source cell phones, free Internet video (YouTube), cloud computing, digitizing books, and much more.The key to Google’s success in all these businesses, Levy reveals, is its engineering mind-set and adoption of such Internet values as speed, openness, experimentation, and risk taking. After its unapologetically elitist approach to hiring, Google pampers its engineers—free food and dry cleaning, on-site doctors and masseuses—and gives them all the resources they need to succeed. Even today, with a workforce of more than 23,000, Larry Page signs off on every hire.But has Google lost its innovative edge? With its newest initiative, social networking, Google is chasing a successful competitor for the first time. Some employees are leaving the company for smaller, nimbler start-ups. Can the company that famously decided not to be evil still compete?No other book has ever turned Google inside out as Levy does with In the Plex.

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

R Programming for Data Science


Roger D. Peng - 2015
    

Machine Learning: A Probabilistic Perspective


Kevin P. Murphy - 2012
    Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites


Matthew A. Russell - 2011
    You’ll learn how to combine social web data, analysis techniques, and visualization to find what you’ve been looking for in the social haystack—as well as useful information you didn’t know existed.Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools.Get a straightforward synopsis of the social web landscapeUse adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, LinkedIn, and Google+Learn how to employ easy-to-use Python tools to slice and dice the data you collectExplore social connections in microformats with the XHTML Friends NetworkApply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detectionBuild interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits"A rich, compact, useful, practical introduction to a galaxy of tools, techniques, and theories for exploring structured and unstructured data." --Alex Martelli, Senior Staff Engineer, Google

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

Hadoop: The Definitive Guide


Tom White - 2009
    Ideal for processing large datasets, the Apache Hadoop framework is an open source implementation of the MapReduce algorithm on which Google built its empire. This comprehensive resource demonstrates how to use Hadoop to build reliable, scalable, distributed systems: programmers will find details for analyzing large datasets, and administrators will learn how to set up and run Hadoop clusters. Complete with case studies that illustrate how Hadoop solves specific problems, this book helps you:Use the Hadoop Distributed File System (HDFS) for storing large datasets, and run distributed computations over those datasets using MapReduce Become familiar with Hadoop's data and I/O building blocks for compression, data integrity, serialization, and persistence Discover common pitfalls and advanced features for writing real-world MapReduce programs Design, build, and administer a dedicated Hadoop cluster, or run Hadoop in the cloud Use Pig, a high-level query language for large-scale data processing Take advantage of HBase, Hadoop's database for structured and semi-structured data Learn ZooKeeper, a toolkit of coordination primitives for building distributed systems If you have lots of data -- whether it's gigabytes or petabytes -- Hadoop is the perfect solution. Hadoop: The Definitive Guide is the most thorough book available on the subject. "Now you have the opportunity to learn about Hadoop from a master-not only of the technology, but also of common sense and plain talk." -- Doug Cutting, Hadoop Founder, Yahoo!

The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses


Eric Ries - 2011
    But many of those failures are preventable. The Lean Startup is a new approach being adopted across the globe, changing the way companies are built and new products are launched. Eric Ries defines a startup as an organization dedicated to creating something new under conditions of extreme uncertainty. This is just as true for one person in a garage or a group of seasoned professionals in a Fortune 500 boardroom. What they have in common is a mission to penetrate that fog of uncertainty to discover a successful path to a sustainable business.The Lean Startup approach fosters companies that are both more capital efficient and that leverage human creativity more effectively. Inspired by lessons from lean manufacturing, it relies on "validated learning," rapid scientific experimentation, as well as a number of counter-intuitive practices that shorten product development cycles, measure actual progress without resorting to vanity metrics, and learn what customers really want. It enables a company to shift directions with agility, altering plans inch by inch, minute by minute.Rather than wasting time creating elaborate business plans, The Lean Startup offers entrepreneurs - in companies of all sizes - a way to test their vision continuously, to adapt and adjust before it's too late. Ries provides a scientific approach to creating and managing successful startups in a age when companies need to innovate more than ever.