Partial Differential Equations for Scientists and Engineers


Stanley J. Farlow - 1982
    Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.

Elementary Statistics: A Step by Step Approach


Allan G. Bluman - 1992
    The book is non-theoretical, explaining concepts intuitively and teaching problem solving through worked examples and step-by-step instructions. This edition places more emphasis on conceptual understanding and understanding results. This edition also features increased emphasis on Excel, MINITAB, and the TI-83 Plus and TI 84-Plus graphing calculators, computing technologies commonly used in such courses.

Math Geek: From Klein Bottles to Chaos Theory, a Guide to the Nerdiest Math Facts, Theorems, and Equations


Raphael Rosen - 2015
    From manhole covers to bubbles to subway maps, each page gives you a glimpse of the world through renowned mathematicians' eyes and reveals how their theorems and equations can be applied to nearly everything you encounter. Covering dozens of your favorite math topics, you'll find fascinating answers to questions like:How are the waiting times for buses determined?Why is Romanesco Broccoli so mesmerizing?How do you divide a cake evenly?Should you run or walk to avoid rain showers?Filled with compelling mathematical explanations, Math Geek sheds light on the incredible world of numbers hidden deep within your day-to-day life.

The Trachtenberg Speed System of Basic Mathematics


Jakow Trachtenberg - 1960
    Described as the 'shorthand of mathematics', the Trachtenberg system only requires the ability to count from one to eleven. Using a series of simplified keys it allows anyone to master calculations, giving greater speed, ease in handling numbers and increased accuracy.Jakow Trachtenberg believed that everyone is born with phenomenal abilities to calculate. He devised a set of rules that allows every child to make multiplication, division, addition, subtraction and square-root calculations with unerring accuracy and at remarkable speed. It is the perfect way to gain confidence with numbers.

QED: The Strange Theory of Light and Matter


Richard P. Feynman - 1985
    QED--the edited version of four lectures on quantum electrodynamics that Feynman gave to the general public at UCLA as part of the Alix G. Mautner Memorial Lecture series--is perhaps the best example of his ability to communicate both the substance and the spirit of science to the layperson.The focus, as the title suggests, is quantum electrodynamics (QED), the part of the quantum theory of fields that describes the interactions of the quanta of the electromagnetic field-light, X rays, gamma rays--with matter and those of charged particles with one another. By extending the formalism developed by Dirac in 1933, which related quantum and classical descriptions of the motion of particles, Feynman revolutionized the quantum mechanical understanding of the nature of particles and waves. And, by incorporating his own readily visualizable formulation of quantum mechanics, Feynman created a diagrammatic version of QED that made calculations much simpler and also provided visual insights into the mechanisms of quantum electrodynamic processes.In this book, using everyday language, spatial concepts, visualizations, and his renowned "Feynman diagrams" instead of advanced mathematics, Feynman successfully provides a definitive introduction to QED for a lay readership without any distortion of the basic science. Characterized by Feynman's famously original clarity and humor, this popular book on QED has not been equaled since its publication.

Godel: A Life Of Logic, The Mind, And Mathematics


John L. Casti - 2000
    His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.

Advanced Engineering Mathematics


Erwin Kreyszig - 1968
    The new edition provides invitations - not requirements - to use technology, as well as new conceptual problems, and new projects that focus on writing and working in teams.

Anatomy & Physiology


Boundless - 2013
    Boundless works with subject matter experts to select the best open educational resources available on the web, review the content for quality, and create introductory, college-level textbooks designed to meet the study needs of university students.<br><br>This textbook covers:<br><br><b>Human Anatomy and Physiology Introduction</b> -- Anatomy and Physiology Overview, Life, Homeostasis, Anatomical Terms, Clinical Cases<br><br><b>General Chemistry</b> -- Matter and Energy, Element Properties: Atomic structure, Chemical Bonds, Chemical Reactions, Inorganic Compounds, Organic Compounds<br><br><b>Cellular Structure and Function</b> -- the study of cells, Cell membranes and the fluid mosaic model, Transport across membranes, How reception works in cell signaling, Nucleus and Ribosomes, Organelles, The Cytoskeleton, External cellular components, Cell division: process and importance, The cell cycle, Transcription and translation, RNA processing, Translation to a polypeptide, Transcription, Apoptosis signals an orderly cell death<br><br><b>Tissues</b> -- Epithelial Tissue, Cell Junctions, Clinical Cases, Tissue Repair, Tissue Development, Cancer, Connective Tissue, Membranes, Nervous Tissue<br><br><b>The Integumentary System</b> -- The Skin, Accessory Structures of the Skin, Functions of the Integumentary System, Wound Healing, Integumentary System Development, Skin Disorders, Imbalances, Diseases, and Clinical Cases<br><br><b>Skeletal Tissue</b> -- Cartilage, Bone Classification, Bone Formation, Bone and Calcium, Bone Development, Bone Diseases, Disorders, Imbalances, and Clinical Cases<br><br><b>The Skeletal System</b> -- Overview of the Musculoskeletal system, Divisions of the Skeletal System, The Axial Skeleton, Skull, Hyoid Bone, Vertebral Column, Thorax, Clinical Cases of the Axial Skeleton, The Appendicular Skeleton, The Pectoral (Shoulder) Girdle, Upper Limb, The Pelvic (Hip) Girdle, Lower Limb, Skeletal System Development, Clinical Cases of the Appendicular Skeleton<br><br><b>Joints</b> -- Classification of Joints, Synovial Joints, Joint Development, Clinical Cases<br><br><b>Muscle Tissue</b> -- Overview of Muscle Tissue, Skeletal Muscle, Control of Muscle Tension, Muscle Metabolism, Exercise and Skeletal Muscle Tissue, Smooth Muscle, Clinical Cases: Muscle Disorders, Development of Muscle<br><br><b>The Muscular System</b> -- Overview of the Muscular System, Head And Neck Muscles, Trunk Muscles, Muscles of the Upper Limb, Muscles of the Lower Limb, Clinical Cases and Muscular System Disorders<br><br><b>Nervous Tissue</b> -- Overview of the Nervous System, Neuroglia, Neurons, Collections of Nervous Tissue, Neurophysiology<br><br><b>Central Nervous System (CNS)</b> -- The Brain, Consciousness, Sleep, Language, and Memory, Protection of the Brain, Parts of The Brain Stem, The Cerebellum, The Diencephalon, Cerebral Cortex (or Cerebral Hemispheres), Functional Systems of the Cerebral Cortex, Development of the CNS, Brain Disorders and Clinical Cases, The Spinal Cord, Spinal Cord Anatomy, Disorders and Clinical Cases of the Spinal Cord<br><br><b>Peripheral Nervous System (PNS)</b> -- Sensation, Sensory Receptors, Somatosensory System, Nerves, Cranial Nerves, Spinal Nerves, Distribution of Spinal Nerves, Motor Activity, Motor Pathways, Reflexes, Pain, Development of the Nervous System, Disorders of Spinal Nerves and Clinical Cases<br><br><b>Autonomic Nervous System (ANS)</b> -- Autonomic Nervous System, ANS Anatomy, Physiology of ANS,

Number Theory


George E. Andrews - 1994
    In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..

Measurement


Paul Lockhart - 2012
    An impassioned critique of K 12 mathematics education, it outlined how we shortchange students by introducing them to math the wrong way. Here Lockhart offers the positive side of the math education story by showing us how math should be done. "Measurement "offers a permanent solution to math phobia by introducing us to mathematics as an artful way of thinking and living.In conversational prose that conveys his passion for the subject, Lockhart makes mathematics accessible without oversimplifying. He makes no more attempt to hide the challenge of mathematics than he does to shield us from its beautiful intensity. Favoring plain English and pictures over jargon and formulas, he succeeds in making complex ideas about the mathematics of shape and motion intuitive and graspable. His elegant discussion of mathematical reasoning and themes in classical geometry offers proof of his conviction that mathematics illuminates art as much as science.Lockhart leads us into a universe where beautiful designs and patterns float through our minds and do surprising, miraculous things. As we turn our thoughts to symmetry, circles, cylinders, and cones, we begin to see that almost anyone can do the math in a way that brings emotional and aesthetic rewards. "Measurement" is an invitation to summon curiosity, courage, and creativity in order to experience firsthand the playful excitement of mathematical work."

Linear Algebra Done Right


Sheldon Axler - 1995
    The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.

Calculus


Michael Spivak - 1967
    His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.

Why Do Buses Come in Threes: The Hidden Mathematics of Everyday Life


Rob Eastaway - 1999
    Why is it better to buy a lottery ticket on a Friday? Why are showers always too hot or too cold? And what's the connection between a rugby player taking a conversion and a tourist trying to get the best photograph of Nelson's Column?These and many other fascinating questions are answered in this entertaining and highly informative book, which is ideal for anyone wanting to remind themselves – or discover for the first time – that maths is relevant to almost everything we do.Dating, cooking, travelling by car, gambling and even life-saving techniques have links with intriguing mathematical problems, as you will find explained here. Whether you have a PhD in astrophysics or haven't touched a maths problem since your school days, this book will give you a fresh understanding of the world around you.

Elements of Information Theory


Thomas M. Cover - 1991
    Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.

Calculus Made Easy


Silvanus Phillips Thompson - 1910
    With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.