Book picks similar to
Outlier Analysis by Charu C. Aggarwal


data-science
mathematics
statistics
datascience

Big Data Now: 2012 Edition


O'Reilly Media Inc. - 2012
    It's not just a technical book or just a businessguide. Data is ubiquitous and it doesn't pay much attention toborders, so we've calibrated our coverage to follow it wherever itgoes.In the first edition of Big Data Now, the O'Reilly team tracked thebirth and early development of data tools and data science. Now, withthis second edition, we're seeing what happens when big data grows up:how it's being applied, where it's playing a role, and theconsequences -- good and bad alike -- of data's ascendance.We've organized the second edition of Big Data Now into five areas:Getting Up to Speed With Big Data -- Essential information on thestructures and definitions of big data.Big Data Tools, Techniques, and Strategies -- Expert guidance forturning big data theories into big data products.The Application of Big Data -- Examples of big data in action,including a look at the downside of data.What to Watch for in Big Data -- Thoughts on how big data will evolveand the role it will play across industries and domains.Big Data and Health Care -- A special section exploring thepossibilities that arise when data and health care come together.

The Hidden Half: How the World Conceals its Secrets


Michael Blastland - 2019
    In this entertaining and ingenious book, Blastland reveals how in our quest to make the world more understandable, we lose sight of how unexplainable it often is. The result - from GDP figures to medicine - is that experts know a lot less than they think. Filled with compelling stories from economics, genetics, business, and science, The Hidden Half is a warning that an explanation which works in one arena may not work in another. Entertaining and provocative, it will change how you view the world.

Stochastic Calculus Models for Finance II: Continuous Time Models (Springer Finance)


Steven E. Shreve - 2004
    The content of this book has been used successfully with students whose mathematics background consists of calculus and calculus-based probability. The text gives both precise statements of results, plausibility arguments, and even some proofs, but more importantly intuitive explanations developed and refine through classroom experience with this material are provided. The book includes a self-contained treatment of the probability theory needed for shastic calculus, including Brownian motion and its properties. Advanced topics include foreign exchange models, forward measures, and jump-diffusion processes.This book is being published in two volumes. This second volume develops shastic calculus, martingales, risk-neutral pricing, exotic options and term structure models, all in continuous time.Masters level students and researchers in mathematical finance and financial engineering will find this book useful.Steven E. Shreve is Co-Founder of the Carnegie Mellon MS Program in Computational Finance and winner of the Carnegie Mellon Doherty Prize for sustained contributions to education.

Neural Networks and Deep Learning


Michael Nielsen - 2013
    The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.

Genetic Algorithms in Search, Optimization, and Machine Learning


David Edward Goldberg - 1989
    Major concepts are illustrated with running examples, and major algorithms are illustrated by Pascal computer programs. No prior knowledge of GAs or genetics is assumed, and only a minimum of computer programming and mathematics background is required. 0201157675B07092001

Mechanical Engineering Reference Manual for the PE Exam


Michael R. Lindeburg - 1994
    Dozens of key charts, tables, and graphs, including updated steam tables and two new charts of LMTD heat exchanger correction factors, make it possible to work most exam problems using the Reference Manual alone. A complete, easy-to-use index saves you valuable time during the exam as it helps you quickly locate important information needed to solve problems._____________________________Since 1975 more than 2 million people preparing for their engineering, surveying, architecture, LEED®, interior design, and landscape architecture exams have entrusted their exam prep to PPI. For more information, visit us at www.ppi2pass.com.

Trustworthy Online Controlled Experiments: A Practical Guide to A/B Testing


Ron Kohavi - 2020
    This practical guide by experimentation leaders at Google, LinkedIn, and Microsoft will teach you how to accelerate innovation using trustworthy online controlled experiments, or A/B tests. Based on practical experiences at companies that each run more than 20,000 controlled experiments a year, the authors share examples, pitfalls, and advice for students and industry professionals getting started with experiments, plus deeper dives into advanced topics for practitioners who want to improve the way they make data-driven decisions. Learn how to - Use the scientific method to evaluate hypotheses using controlled experiments - Define key metrics and ideally an Overall Evaluation Criterion - Test for trustworthiness of the results and alert experimenters to violated assumptions - Build a scalable platform that lowers the marginal cost of experiments close to zero - Avoid pitfalls like carryover effects and Twyman's law - Understand how statistical issues play out in practice.

Introducing Microsoft Power BI


Alberto Ferrari - 2016
    Stay in the know, spot trends as they happen, and push your business to new limits. This e-book introduces Microsoft Power BI basics through a practical, scenario-based guided tour of the tool, showing you how to build analytical solutions using Power BI. Get an overview of Power BI, or dig deeper and follow along on your PC using the book's examples.

Modern Systems Analysis and Design


Jeffrey A. Hoffer - 1996
    For advanced undergraduate and graduate courses in Systems Analysis and Design taught from a business perspective.Modern Systems Analysis and Design offers separate coverage of Object-Oriented and Structured material giving instructors flexibility to choose the best way to connect the material with students.

Quantum Electrodynamics


Richard P. Feynman - 1962
    Designed for the student of experimental physics who does not intend to take more advanced graduate courses in theoretical physics, the material consists of notes on the third of a three-semester course given at the California Institute of Technology.

The Data Detective: Ten Easy Rules to Make Sense of Statistics


Tim Harford - 2020
    That’s a mistake, Tim Harford says in The Data Detective. We shouldn’t be suspicious of statistics—we need to understand what they mean and how they can improve our lives: they are, at heart, human behavior seen through the prism of numbers and are often “the only way of grasping much of what is going on around us.” If we can toss aside our fears and learn to approach them clearly—understanding how our own preconceptions lead us astray—statistics can point to ways we can live better and work smarter.As “perhaps the best popular economics writer in the world” (New Statesman), Tim Harford is an expert at taking complicated ideas and untangling them for millions of readers. In The Data Detective, he uses new research in science and psychology to set out ten strategies for using statistics to erase our biases and replace them with new ideas that use virtues like patience, curiosity, and good sense to better understand ourselves and the world. As a result, The Data Detective is a big-idea book about statistics and human behavior that is fresh, unexpected, and insightful.

Learn Python in One Day and Learn It Well: Python for Beginners with Hands-on Project


Jamie Chan - 2014
    Master Python Programming with a unique Hands-On Project Have you always wanted to learn computer programming but are afraid it'll be too difficult for you? Or perhaps you know other programming languages but are interested in learning the Python language fast? This book is for you. You no longer have to waste your time and money learning Python from lengthy books, expensive online courses or complicated Python tutorials. What this book offers... Python for Beginners Complex concepts are broken down into simple steps to ensure that you can easily master the Python language even if you have never coded before. Carefully Chosen Python Examples Examples are carefully chosen to illustrate all concepts. In addition, the output for all examples are provided immediately so you do not have to wait till you have access to your computer to test the examples. Careful selection of topics Topics are carefully selected to give you a broad exposure to Python, while not overwhelming you with information overload. These topics include object-oriented programming concepts, error handling techniques, file handling techniques and more. Learn The Python Programming Language Fast Concepts are presented in a "to-the-point" style to cater to the busy individual. With this book, you can learn Python in just one day and start coding immediately. How is this book different... The best way to learn Python is by doing. This book includes a complete project at the end of the book that requires the application of all the concepts taught previously. Working through the project will not only give you an immense sense of achievement, it"ll also help you retain the knowledge and master the language. Are you ready to dip your toes into the exciting world of Python coding? This book is for you. With the first edition of this book being a #1 best-selling programming ebook on Amazon for more than a year, you can rest assured that this new and improved edition is the perfect book for you to learn the Python programming language fast. Click the BUY button and download it now. What you'll learn: - What is Python? - What software you need to code and run Python programs? - What are variables? - What are the common data types in Python? - What are Lists and Tuples? - How to format strings - How to accept user inputs and display outputs - How to control the flow of program with loops - How to handle errors and exceptions - What are functions and modules? - How to define your own functions and modules - How to work with external files - What are objects and classes - How to write your own class - What is inheritance - What are properties - What is name mangling .. and more... Finally, you'll be guided through a hands-on project that requires the application of all the topics covered. Click the BUY button and download the book now to start learning Python. Learn it fast and learn it well. Tags: ------------ Python, Object-oriented Python, Python course, Python book, learning Python, Python language, Python examples, Python tutorials, Python programming language, Python coding, Pyth

Using Multivariate Statistics


Barbara G. Tabachnick - 1983
    It givessyntax and output for accomplishing many analyses through the mostrecent releases of SAS, SPSS, and SYSTAT, some not available insoftware manuals. The book maintains its practical approach, stillfocusing on the benefits and limitations of applications of a techniqueto a data set -- when, why, and how to do it. Overall, it providesadvanced students with a timely and comprehensive introduction totoday's most commonly encountered statistical and multivariatetechniques, while assuming only a limited knowledge of higher-levelmathematics.

Head First Design Patterns


Eric Freeman - 2004
     At any given moment, somewhere in the world someone struggles with the same software design problems you have. You know you don't want to reinvent the wheel (or worse, a flat tire), so you look to Design Patterns--the lessons learned by those who've faced the same problems. With Design Patterns, you get to take advantage of the best practices and experience of others, so that you can spend your time on...something else. Something more challenging. Something more complex. Something more fun. You want to learn about the patterns that matter--why to use them, when to use them, how to use them (and when NOT to use them). But you don't just want to see how patterns look in a book, you want to know how they look "in the wild". In their native environment. In other words, in real world applications. You also want to learn how patterns are used in the Java API, and how to exploit Java's built-in pattern support in your own code. You want to learn the real OO design principles and why everything your boss told you about inheritance might be wrong (and what to do instead). You want to learn how those principles will help the next time you're up a creek without a design pattern. Most importantly, you want to learn the "secret language" of Design Patterns so that you can hold your own with your co-worker (and impress cocktail party guests) when he casually mentions his stunningly clever use of Command, Facade, Proxy, and Factory in between sips of a martini. You'll easily counter with your deep understanding of why Singleton isn't as simple as it sounds, how the Factory is so often misunderstood, or on the real relationship between Decorator, Facade and Adapter. With Head First Design Patterns, you'll avoid the embarrassment of thinking Decorator is something from the "Trading Spaces" show. Best of all, in a way that won't put you to sleep! We think your time is too important (and too short) to spend it struggling with academic texts. If you've read a Head First book, you know what to expect--a visually rich format designed for the way your brain works. Using the latest research in neurobiology, cognitive science, and learning theory, Head First Design Patterns will load patterns into your brain in a way that sticks. In a way that lets you put them to work immediately. In a way that makes you better at solving software design problems, and better at speaking the language of patterns with others on your team.

Matrix Computations


Gene H. Golub - 1983
    It includes rewritten and clarified proofs and derivations, as well as new topics such as Arnoldi iteration, and domain decomposition methods.