The Principia: Mathematical Principles of Natural Philosophy


Isaac Newton - 1687
    Even after more than three centuries and the revolutions of Einsteinian relativity and quantum mechanics, Newtonian physics continues to account for many of the phenomena of the observed world, and Newtonian celestial dynamics is used to determine the orbits of our space vehicles.This completely new translation, the first in 270 years, is based on the third (1726) edition, the final revised version approved by Newton; it includes extracts from the earlier editions, corrects errors found in earlier versions, and replaces archaic English with contemporary prose and up-to-date mathematical forms. Newton's principles describe acceleration, deceleration, and inertial movement; fluid dynamics; and the motions of the earth, moon, planets, and comets. A great work in itself, the Principia also revolutionized the methods of scientific investigation. It set forth the fundamental three laws of motion and the law of universal gravity, the physical principles that account for the Copernican system of the world as emended by Kepler, thus effectively ending controversy concerning the Copernican planetary system.The illuminating Guide to the Principia by I. Bernard Cohen, along with his and Anne Whitman's translation, will make this preeminent work truly accessible for today's scientists, scholars, and students.

Asimov on Numbers


Isaac Asimov - 1978
    From man's first act of counting to higher mathematics, from the smallest living creature to the dazzling reaches of outer space, Asimov is a master at "explaining complex material better than any other living person." (The New York Times) You'll learn: HOW to make a trillion seem small; WHY imaginary numbers are real; THE real size of the universe - in photons; WHY the zero isn't "good for nothing;" AND many other marvelous discoveries, in ASIMOV ON NUMBERS.

Understanding Thermodynamics


Hendrick C. Van Ness - 1983
    Language is informal, examples are vivid and lively, and the perspectivie is fresh. Based on lectures delivered to engineering students, this work will also be valued by scientists, engineers, technicians, businessmen, anyone facing energy challenges of the future.

A More Perfect Heaven: How Copernicus Revolutionized the Cosmos


Dava Sobel - 2011
    Over the next two decades, Copernicus expanded his theory through hundreds of observations, while compiling in secret a book-length manuscript that tantalized mathematicians and scientists throughout Europe. For fear of ridicule, he refused to publish.In 1539, a young German mathematician, Georg Joachim Rheticus, drawn by rumors of a revolution to rival the religious upheaval of Martin Luther's Reformation, traveled to Poland to seek out Copernicus. Two years later, the Protestant youth took leave of his aging Catholic mentor and arranged to have Copernicus's manuscript published, in 1543, as De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres)-the book that forever changed humankind's place in the universe.In her elegant, compelling style, Dava Sobel chronicles, as nobody has, the conflicting personalities and extraordinary discoveries that shaped the Copernican Revolution. At the heart of the book is her play And the Sun Stood Still, imagining Rheticus's struggle to convince Copernicus to let his manuscript see the light of day. As she achieved with her bestsellers Longitude and Galileo's Daughter, Sobel expands the bounds of narration, giving us an unforgettable portrait of scientific achievement, and of the ever-present tensions between science and faith.

The Logic Book


Merrie Bergmann - 1980
    Its flexible organization (with all chapters complete and self-contained) allows instructors the freedom to cover the topics they want in the order they choose.

How to Read Numbers: A Guide to Stats in the News (and Knowing When to Trust Them)


Tom Chivers - 2021
    Sometimes it’ll be obvious – ‘X people develop cancer every year’ – and sometimes less obvious – ‘How smartphones destroyed a generation’. Statistics are an immensely powerful tool for understanding the world; the best tool we have. But in the wrong hands, they can be dangerous.This book will help you spot common mistakes and tricks that can mislead you into thinking that small numbers are big, or unimportant changes are important. It will show you how the numbers you read are made – you’ll learn about how surveys with small or biased samples can generate wrong answers, and why ice cream doesn’t cause drownings.We are surrounded by numbers and data, and it has never been more important to separate the good from the bad, the true from the false. HOW TO READ NUMBERS is a vital guide that will help you understand when and how to trust the numbers in the news – and, just as importantly, when not to.

Turing's Cathedral: The Origins of the Digital Universe


George Dyson - 2012
    In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time.  How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.

How to read and do proofs


Daniel Solow - 1982
    Shows how any proof can be understood as a sequence of techniques. Covers the full range of techniques used in proofs, such as the contrapositive, induction, and proof by contradiction. Explains how to identify which techniques are used and how they are applied in the specific problem. Illustrates how to read written proofs with many step-by-step examples. Includes new, expanded appendices related to discrete mathematics, linear algebra, modern algebra and real analysis.

The Maths Book: Big Ideas Simply Explained


D.K. Publishing - 2019
    Take a journey through the fascinating story of fractions, numbers, patterns, and shapes in order to better understand the complex world we live in.Continuing the "Big Ideas" series' trademark combination of authoritative, clear text and bold graphics to chart the development of maths through history, the book explores and explains some of the most complex and fascinating mathematical subjects. Delve into everything from the mathematical ideas and inventions of the ancient world such as the first number systems, magic squares, and the Chinese abacus, through to the developments in mathematics during medieval and Renaissance Europe, to the rise of group theory and cryptography more recently.This diverse and inclusive account of mathematics will have something for everybody: for those interested in the maths behind world economies, secret spies, modern technology and plenty more, taking readers around the world from Babylon to Bletchley Park. Tracing maths through the Scientific Revolution to its 21st-century use in computers, the internet, and AI, The Maths Book uses an innovative visual approach to make the subject accessible to everyone, casual readers and students alike.

The Fractal Geometry of Nature


Benoît B. Mandelbrot - 1977
    The complexity of nature's shapes differs in kind, not merely degree, from that of the shapes of ordinary geometry, the geometry of fractal shapes.Now that the field has expanded greatly with many active researchers, Mandelbrot presents the definitive overview of the origins of his ideas and their new applications. The Fractal Geometry of Nature is based on his highly acclaimed earlier work, but has much broader and deeper coverage and more extensive illustrations.

The Shape of Space: How to Visualize Surfaces and Three-Dimensional Manifolds


Jeffrey R. Weeks - 1985
    Bridging the gap from geometry to the latest work in observational cosmology, the book illustrates the connection between geometry and the behavior of the physical universe and explains how radiation remaining from the big bang may reveal the actual shape of the universe.

E=mc²: A Biography of the World's Most Famous Equation


David Bodanis - 2000
    Just about everyone has at least heard of Albert Einstein's formulation of 1905, which came into the world as something of an afterthought. But far fewer can explain his insightful linkage of energy to mass. David Bodanis offers an easily grasped gloss on the equation. Mass, he writes, "is simply the ultimate type of condensed or concentrated energy," whereas energy "is what billows out as an alternate form of mass under the right circumstances." Just what those circumstances are occupies much of Bodanis's book, which pays homage to Einstein and, just as important, to predecessors such as Maxwell, Faraday, and Lavoisier, who are not as well known as Einstein today. Balancing writerly energy and scholarly weight, Bodanis offers a primer in modern physics and cosmology, explaining that the universe today is an expression of mass that will, in some vastly distant future, one day slide back to the energy side of the equation, replacing the "dominion of matter" with "a great stillness"--a vision that is at once lovely and profoundly frightening. Without sliding into easy psychobiography, Bodanis explores other circumstances as well; namely, Einstein's background and character, which combined with a sterling intelligence to afford him an idiosyncratic view of the way things work--a view that would change the world. --Gregory McNamee

Why Pi?


Johnny Ball - 2009
    Full color.

Unscientific America: How Scientific Illiteracy Threatens Our Future


Chris C. Mooney - 2009
    Snow described science and the humanities as "two cultures," separated by a "gulf of mutual incomprehension." And the humanists had all the cultural power--the low prestige of science, Snow argued, left Western leaders too little educated in scientific subjects that were increasingly central to world problems: the elementary physics behind nuclear weapons, for instance, or the basics of plant science needed to feed the world's growing population.Now, Chris Mooney and Sheril Kirshenbaum, a journalist-scientist team, offer an updated "two cultures" polemic for America in the 21st century. Just as in Snow's time, some of our gravest challenges--climate change, the energy crisis, national economic competitiveness--and gravest threats--global pandemics, nuclear proliferation--have fundamentally scientific underpinnings. Yet we still live in a culture that rarely takes science seriously or has it on the radar.For every five hours of cable news, less than a minute is devoted to science; 46 percent of Americans reject evolution and think the Earth is less than 10,000 years old; the number of newspapers with weekly science sections has shrunken by two-thirds over the past several decades. The public is polarized over climate change--an issue where political party affiliation determines one's view of reality--and in dangerous retreat from childhood vaccinations. Meanwhile, only 18 percent of Americans have even met a scientist to begin with; more than half can't name a living scientist role model.For this dismaying situation, Mooney and Kirshenbaum don't let anyone off the hook. They highlight the anti-intellectual tendencies of the American public (and particularly the politicians and journalists who are supposed to serve it), but also challenge the scientists themselves, who despite the best of intentions have often failed to communicate about their work effectively to a broad public--and so have ceded their critical place in the public sphere to religious and commercial propagandists.A plea for enhanced scientific literacy, Unscientific America urges those who care about the place of science in our society to take unprecedented action. We must begin to train a small army of ambassadors who can translate science's message and make it relevant to the media, to politicians, and to the public in the broadest sense. An impassioned call to arms worthy of Snow's original manifesto, this book lays the groundwork for reintegrating science into the public discourse--before it's too late.

Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law


Peter Woit - 2006
    In Peter Woit's view, superstring theory is just such an idea. In Not Even Wrong , he shows that what many physicists call superstring "theory" is not a theory at all. It makes no predictions, even wrong ones, and this very lack of falsifiability is what has allowed the subject to survive and flourish. Not Even Wrong explains why the mathematical conditions for progress in physics are entirely absent from superstring theory today and shows that judgments about scientific statements, which should be based on the logical consistency of argument and experimental evidence, are instead based on the eminence of those claiming to know the truth. In the face of many books from enthusiasts for string theory, this book presents the other side of the story.