Book picks similar to
Physics for Mathematicians: Mechanics I by Michael Spivak
physics
mathematics
textbooks
math
Archimedes' Revenge: The Joys and Perils of Mathematics
Paul Hoffman - 1988
An extremely clever account.--The New Yorker.
3,000 Solved Problems in Physics
Alvin Halpern - 1988
Contains 3000 solved problems with solutions, solved problems; an index to help you quickly locate the types of problems you want to solve; problems like those you'll find on your exams; techniques for choosing the correct approach to problems; and guidance toward efficient solutions.
The Millennium Problems
Keith Devlin - 2002
For mathematicians, physicists, engineers, and everyone else with an interest in mathematics' cutting edge, The Millennium Problems is the definitive account of a subject that will have a very long shelf life.
Zero: The Biography of a Dangerous Idea
Charles Seife - 2000
For centuries, the power of zero savored of the demonic; once harnessed, it became the most important tool in mathematics. Zero follows this number from its birth as an Eastern philosophical concept to its struggle for acceptance in Europe and its apotheosis as the mystery of the black hole. Today, zero lies at the heart of one of the biggest scientific controversies of all time, the quest for the theory of everything. Elegant, witty, and enlightening, Zero is a compelling look at the strangest number in the universe and one of the greatest paradoxes of human thought.
Statistics Done Wrong: The Woefully Complete Guide
Alex Reinhart - 2013
Politicians and marketers present shoddy evidence for dubious claims all the time. But smart people make mistakes too, and when it comes to statistics, plenty of otherwise great scientists--yes, even those published in peer-reviewed journals--are doing statistics wrong."Statistics Done Wrong" comes to the rescue with cautionary tales of all-too-common statistical fallacies. It'll help you see where and why researchers often go wrong and teach you the best practices for avoiding their mistakes.In this book, you'll learn: - Why "statistically significant" doesn't necessarily imply practical significance- Ideas behind hypothesis testing and regression analysis, and common misinterpretations of those ideas- How and how not to ask questions, design experiments, and work with data- Why many studies have too little data to detect what they're looking for-and, surprisingly, why this means published results are often overestimates- Why false positives are much more common than "significant at the 5% level" would suggestBy walking through colorful examples of statistics gone awry, the book offers approachable lessons on proper methodology, and each chapter ends with pro tips for practicing scientists and statisticians. No matter what your level of experience, "Statistics Done Wrong" will teach you how to be a better analyst, data scientist, or researcher.
Ordinary Differential Equations
Morris Tenenbaum - 1985
Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Sciencia: Mathematics, Physics, Chemistry, Biology, and Astronomy for All
Burkard Polster - 2011
Lavishly illustrated with engravings, woodcuts, and original drawings and diagrams, Sciencia will inspire readers of all ages to take an interest in the interconnected knowledge of the modern sciences.Beautifully produced in thirteen different colors of ink, Sciencia is an essential reference and an elegant gift.Wooden Books was founded in 1999 by designer John Martineau near Hay-on-Wye. The aim was to produce a beautiful series of recycled books based on the classical philosophies, arts and sciences. Using the Beatrix Potter formula of text facing picture pages, and old-styles fonts, along with hand-drawn illustrations and 19th century engravings, the books are designed not to date. Small but stuffed with information. Eco friendly and educational. Big ideas in a tiny space. There are over 1,000,000 Wooden Books now in print worldwide and growing.
Quantum Field Theory: A Modern Introduction International Student Edition
Michio Kaku - 1993
It includes discussions of topics that have become vital to a modern treatment of GFT, such as critical phenomena, lattice gauge theory, supersymmetry, quantum gravity, supergravity, and superstrings.
Quadrivium: The Four Classical Liberal Arts of Number, Geometry, Music, & Cosmology
John Martineau - 2010
It was studied from antiquity to the Renaissance as a way of glimpsing the nature of reality. Geometry is number in space; music is number in time; and comology expresses number in space and time. Number, music, and geometry are metaphysical truths: life across the universe investigates them; they foreshadow the physical sciences.Quadrivium is the first volume to bring together these four subjects in many hundreds of years. Composed of six successful titles in the Wooden Books series-Sacred Geometry, Sacred Number, Harmonograph, The Elements of Music, Platonic & Archimedean Solids, and A Little Book of Coincidence-it makes ancient wisdom and its astonishing interconnectedness accessible to us today.Beautifully produced in six different colors of ink, Quadrivium will appeal to anyone interested in mathematics, music, astronomy, and how the universe works.
A Short Account of the History of Mathematics
W.W. Rouse Ball - 1900
From the early Greek influences to the Middle Ages and the Renaissance to the end of the 19th century, trace the fascinating foundation of mathematics as it developed through the ages. Aristotle, Galileo, Kepler, Newton: you know the names. Now here's what they really did, and the effect their discoveries had on our culture, all explained in a way the layperson can understand. Begin with the basis of arithmetic (Plato and the introduction of geometry), and discover why the use of Arabic numerals was critical to the development of both commerce and science. The development of calculus made space travel a reality, while the abacus prefigured the computer. The greats examined in depth include Leonardo da Vinci, a brilliant mathematician as well as artist; Pascal, who laid out the theory of probabilities; and Fermat, whose intriguing theory has only recently been solved.
Foundations of Complex Analysis
S. Ponnusamy - 2002
Suitable for a two semester course in complex analysis, or as a supplementary text for an advanced course in function theory, this book aims to give students a good foundation of complex analysis and provides a basis for solving problems in mathematics, physics, engineering and many other sciences.
Understanding Analysis
Stephen Abbott - 2000
The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination.
The Complete Idiot's Guide to String Theory
George Musser - 2008
The aim of this new revolution is to develop a "theory of everything" -- a set of laws of physics that will explain all that can be explained, ranging from the tiniest subatomic particle to the universe as a whole. Here, readers will learn the ideas behind the theories and their effects upon our world, our civilization, and ourselves.
Div, Grad, Curl, and All That: An Informal Text on Vector Calculus
Harry M. Schey - 1973
Since the publication of the First Edition over thirty years ago, Div, Grad, Curl, and All That has been widely renowned for its clear and concise coverage of vector calculus, helping science and engineering students gain a thorough understanding of gradient, curl, and Laplacian operators without required knowledge of advanced mathematics.
How to Think About Analysis
Lara Alcock - 2014
It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. It is not like other Analysis books. It is not a textbook containing standard content. Rather, it is designed to be read before arriving at university and/or before starting an Analysis course, or as a companion text once a course is begun. It provides a friendly and readable introduction to the subject by building on the students existing understanding of six key topics: sequences, series, continuity, differentiability, integrability and the real numbers. It explains how mathematicians develop and use sophisticated formal versions of these ideas, and provides a detailed introduction to the central definitions, theorems and proofs, pointing out typical areas of difficulty and confusion and explaining how to overcome these. The book also provides study advice focused on the skills that students need if they are to build on this introduction and learn successfully in their own Analysis courses: it explains how to understand definitions, theorems and proofs by relating them to examples and diagrams, how to think productively about proofs, and how theories are taught in lectures and books on advanced mathematics. It also offers practical guidance on strategies for effective study planning. The advice throughout is research-based and is presented in an engaging style that will be accessible to students who are new to advanced abstract mathematics.