Book picks similar to
A Course of Modern Analysis by Edmund Taylor Whittaker
mathematics
math
reference
mat
The Shape of a Life: One Mathematician's Search for the Universe's Hidden Geometry
Shing-Tung Yau - 2019
“An unexpectedly intimate look into a highly accomplished man, his colleagues and friends, the development of a new field of geometric analysis, and a glimpse into a truly uncommon mind.”—Nina MacLaughlin,
Boston Globe
“Engaging, eminently readable . . . For those with a taste for elegant and largely jargon-free explanations of mathematics, The Shape of a Life promises hours of rewarding reading.”—Judith Goodstein, American Scientist Harvard geometer and Fields medalist Shing-Tung Yau has provided a mathematical foundation for string theory, offered new insights into black holes, and mathematically demonstrated the stability of our universe. In this autobiography, Yau reflects on his improbable journey to becoming one of the world’s most distinguished mathematicians. Beginning with an impoverished childhood in China and Hong Kong, Yau takes readers through his doctoral studies at Berkeley during the height of the Vietnam War protests, his Fields Medal–winning proof of the Calabi conjecture, his return to China, and his pioneering work in geometric analysis. This new branch of geometry, which Yau built up with his friends and colleagues, has paved the way for solutions to several important and previously intransigent problems. With complicated ideas explained for a broad audience, this book offers readers not only insights into the life of an eminent mathematician, but also an accessible way to understand advanced and highly abstract concepts in mathematics and theoretical physics.
104 Number Theory Problems: From the Training of the USA IMO Team
Titu Andreescu - 2006
Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas in writing to explain how they conceive problems, what conjectures they make, and what conclusions they reach. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.
Real Analysis
H.L. Royden - 1963
Dealing with measure theory and Lebesque integration, this is an introductory graduate text.
Partial Differential Equations for Scientists and Engineers
Stanley J. Farlow - 1982
Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.
Quantum Mechanics
Claude Cohen-Tannoudji - 1977
Nobel-Prize-winner Claude Cohen-Tannoudji and his colleagues have written this book to eliminate precisely these difficulties. Fourteen chapters provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples which make this work a textbook as well as a timeless reference, allowing to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem which is then treated, and logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples which are put into complementary sections. The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic and thorough presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones like e.g. the harmonic oscillator, and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics as well as detailed expositions of a large number of special problems and more advanced topics, integrated as an essential portion of the text.
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving
Sanjoy Mahajan - 2010
Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Multivariable Calculus
James Stewart - 1991
In the Fourth Edition CALCULUS, EARLY TRANSCENDENTALS these functions are introduced in the first chapter and their limits and derivatives are found in Chapters 2 and 3 at the same time as polynomials and other elementary functions. In this Fourth Edition, Stewart retains the focus on problem solving, the meticulous accuracy, the patient explanations, and the carefully graded problems that have made these texts word so well for a wide range of students. All new and unique features in CALCULUS, FOURTH EDITION have been incorporated into these revisions also.
Numerical Analysis
Richard L. Burden - 1978
Explaining how, why, and when the techniques can be expected to work, the Seventh Edition places an even greater emphasis on building readers' intuition to help them understand why the techniques presented work in general, and why, in some situations, they fail. Applied problems from diverse areas, such as engineering and physical, computer, and biological sciences, are provided so readers can understand how numerical methods are used in real-life situations. The Seventh Edition has been updated and now addresses the evolving use of technology, incorporating it whenever appropriate.
Labyrinths of Reason: Paradox, Puzzles and the Frailty of Knowledge
William Poundstone - 1988
This sharply intelligent, consistently provocative book takes the reader on an astonishing, thought-provoking voyage into the realm of delightful uncertainty--a world of paradox in which logical argument leads to contradiction and common sense is seemingly rendered irrelevant.
Div, Grad, Curl, and All That: An Informal Text on Vector Calculus
Harry M. Schey - 1973
Since the publication of the First Edition over thirty years ago, Div, Grad, Curl, and All That has been widely renowned for its clear and concise coverage of vector calculus, helping science and engineering students gain a thorough understanding of gradient, curl, and Laplacian operators without required knowledge of advanced mathematics.
Stochastic Calculus Models for Finance II: Continuous Time Models (Springer Finance)
Steven E. Shreve - 2004
The content of this book has been used successfully with students whose mathematics background consists of calculus and calculus-based probability. The text gives both precise statements of results, plausibility arguments, and even some proofs, but more importantly intuitive explanations developed and refine through classroom experience with this material are provided. The book includes a self-contained treatment of the probability theory needed for shastic calculus, including Brownian motion and its properties. Advanced topics include foreign exchange models, forward measures, and jump-diffusion processes.This book is being published in two volumes. This second volume develops shastic calculus, martingales, risk-neutral pricing, exotic options and term structure models, all in continuous time.Masters level students and researchers in mathematical finance and financial engineering will find this book useful.Steven E. Shreve is Co-Founder of the Carnegie Mellon MS Program in Computational Finance and winner of the Carnegie Mellon Doherty Prize for sustained contributions to education.
Number Theory
George E. Andrews - 1994
In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..
Entertaining Mathematical Puzzles
Martin Gardner - 1986
Puzzlists need only an elementary knowledge of math and a will to resist looking up the answer before trying to solve a problem.Written in a light and witty style, Entertaining Mathematical Puzzles is a mixture of old and new riddles, grouped into sections that cover a variety of mathematical topics: money, speed, plane and solid geometry, probability, topology, tricky puzzles, and more. The probability section, for example, points out that everything we do, everything that happens around us, obeys the laws of probability; geometry puzzles test our ability to think pictorially and often, in more than one dimension; while topology, among the "youngest and rowdiest branches of modern geometry," offers a glimpse into a strange dimension where properties remain unchanged, no matter how a figure is twisted, stretched, or compressed.Clear and concise comments at the beginning of each section explain the nature and importance of the math needed to solve each puzzle. A carefully explained solution follows each problem. In many cases, all that is needed to solve a puzzle is the ability to think logically and clearly, to be "on the alert for surprising, off-beat angles...that strange hidden factor that everyone else had overlooked."Fully illustrated, this engaging collection will appeal to parents and children, amateur mathematicians, scientists, and students alike, and may, as the author writes, make the reader "want to study the subject in earnest" and explains "some of the inviting paths that wind away from the problems into lusher areas of the mathematical jungle." 65 black-and-white illustrations.
Linear Algebra Done Right
Sheldon Axler - 1995
The novel approach taken here banishes determinants to the end of the book and focuses on the central goal of linear algebra: understanding the structure of linear operators on vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. For example, the book presents - without having defined determinants - a clean proof that every linear operator on a finite-dimensional complex vector space (or an odd-dimensional real vector space) has an eigenvalue. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. This second edition includes a new section on orthogonal projections and minimization problems. The sections on self-adjoint operators, normal operators, and the spectral theorem have been rewritten. New examples and new exercises have been added, several proofs have been simplified, and hundreds of minor improvements have been made throughout the text.
Calculus
Michael Spivak - 1967
His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.