Amazon Web Services in Action
Andreas Wittig - 2015
The book will teach you about the most important services on AWS. You will also learn about best practices regarding automation, security, high availability, and scalability.Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.About the TechnologyPhysical data centers require lots of equipment and take time and resources to manage. If you need a data center, but don't want to build your own, Amazon Web Services may be your solution. Whether you're analyzing real-time data, building software as a service, or running an e-commerce site, AWS offers you a reliable cloud-based platform with services that scale. All services are controllable via an API which allows you to automate your infrastructure.About the BookAmazon Web Services in Action introduces you to computing, storing, and networking in the AWS cloud. The book will teach you about the most important services on AWS. You will also learn about best practices regarding security, high availability and scalability.You'll start with a broad overview of cloud computing and AWS and learn how to spin-up servers manually and from the command line. You'll learn how to automate your infrastructure by programmatically calling the AWS API to control every part of AWS. You will be introduced to the concept of Infrastructure as Code with the help of AWS CloudFormation.You will learn about different approaches to deploy applications on AWS. You'll also learn how to secure your infrastructure by isolating networks, controlling traffic and managing access to AWS resources. Next, you'll learn options and techniques for storing your data. You will experience how to integrate AWS services into your own applications by the use of SDKs. Finally, this book teaches you how to design for high availability, fault tolerance, and scalability.What's InsideOverview of cloud concepts and patternsManage servers on EC2 for cost-effectivenessInfrastructure automation with Infrastructure as Code (AWS CloudFormation)Deploy applications on AWSStore data on AWS: SQL, NoSQL, object storage and block storageIntegrate Amazon's pre-built servicesArchitect highly available and fault tolerant systemsAbout the ReaderWritten for developers and DevOps engineers moving distributed applications to the AWS platform.About the AuthorsAndreas Wittig and Michael Wittig are software engineers and consultants focused on AWS and web development.Table of ContentsPART 1 GETTING STARTEDWhat is Amazon Web Services?A simple example: WordPress in five minutesPART 2 BUILDING VIRTUAL INFRASTRUCTURE WITH SERVERS AND NETWORKINGUsing virtual servers: EC2Programming your infrastructure: the command line, SDKs, and CloudFormationAutomating deployment: CloudFormation, Elastic Beanstalk, and OpsWorksSecuring your system: IAM, security groups, and VPCPART 3 STORING DATA IN THE CLOUDStoring your objects: S3 and GlacierStoring your data on hard drives: EBS and instance storeUsing a relational database service: RDSProgramming for the NoSQL database service: DynamoDBPART 4 ARCHITECTING ON AWSAchieving high availability: availability zones, auto-scaling, and CloudWatchDecoupling your infrastructure: ELB and SQSDesigning for fault-toleranceScaling up and down: auto-scaling and CloudWatch
Game Project Completed: How Successful Indie Game Developers Finish Their Projects
Thomas Schwarzl - 2014
They teach you how to make games. This book does not show you how to make games. It shows you how to take your game project to the finish line. Many game projects never make it beyond the alpha state.Game Development Success Is All About The Inner Game.Being a successful game developer does not (just) mean being a great programmer, a smart game designer or a gifted artist. It means dominating the inner game of game making. This separates the pros from the wannabes. It's the knowledge of how to stay focused, motivated and efficient during your game projects. It's the skillset of keeping things simple and avoiding misleading dreams of the next overnight success. Finally it's about thinking as a salesperson, not just as a designer, programmer or artist.
Hands-On Programming with R: Write Your Own Functions and Simulations
Garrett Grolemund - 2014
With this book, you'll learn how to load data, assemble and disassemble data objects, navigate R's environment system, write your own functions, and use all of R's programming tools.RStudio Master Instructor Garrett Grolemund not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. You'll gain valuable programming skills and support your work as a data scientist at the same time.Work hands-on with three practical data analysis projects based on casino gamesStore, retrieve, and change data values in your computer's memoryWrite programs and simulations that outperform those written by typical R usersUse R programming tools such as if else statements, for loops, and S3 classesLearn how to write lightning-fast vectorized R codeTake advantage of R's package system and debugging toolsPractice and apply R programming concepts as you learn them
Python Data Science Handbook: Tools and Techniques for Developers
Jake Vanderplas - 2016
Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python.With this handbook, you’ll learn how to use: * IPython and Jupyter: provide computational environments for data scientists using Python * NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python * Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python * Matplotlib: includes capabilities for a flexible range of data visualizations in Python * Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
PROLOG: Programming for Artificial Intelligence
Ivan Bratko - 1986
Divided into two parts, the first part of the book introduces the programming language Prolog, while the second part teaches Artificial Intelligence using Prolog as a tool for the implementation of AI techniques. Prolog has its roots in logic, however the main aim of this book is to teach Prolog as a practical programming tool. This text therefore concentrates on the art of using the basic mechanisms of Prolog to solve interesting problems. The third edition has been fully revised and extended to provide an even greater range of applications, which further enhance its value as a self-contained guide to Prolog, AI or AI Programming for students and professional programmers alike.
Unity 3.X Game Development Essentials
Will Goldstone - 2009
With no prior knowledge of game development or 3D required, you will learn from scratch, taking each concept at a time working up to a full 3D mini-game. You'll learn scripting with C# or JavaScript and master the Unity development environment with easy-to-follow stepwise tasks. If you're a designer or animator who wishes to take their first steps into game development or prototyping, or if you've simply spent many hours sitting in front of video games, with ideas bubbling away in the back of your mind, Unity and this book should be your starting point. No prior knowledge of game production is required, inviting you to simply bring with you a passion for making great games.
Head First HTML and CSS
Elisabeth Robson - 2012
You want to learn HTML so you can finally create those web pages you've always wanted, so you can communicate more effectively with friends, family, fans, and fanatic customers. You also want to do it right so you can actually maintain and expand your web pages over time so they work in all browsers and mobile devices. Oh, and if you've never heard of CSS, that's okay--we won't tell anyone you're still partying like it's 1999--but if you're going to create web pages in the 21st century then you'll want to know and understand CSS. Learn the real secrets of creating web pages, and why everything your boss told you about HTML tables is probably wrong (and what to do instead). Most importantly, hold your own with your co-worker (and impress cocktail party guests) when he casually mentions how his HTML is now strict, and his CSS is in an external style sheet. With Head First HTML, you'll avoid the embarrassment of thinking web-safe colors still matter, and the foolishness of slipping a font tag into your pages. Best of all, you'll learn HTML and CSS in a way that won't put you to sleep. If you've read a Head First book, you know what to expect: a visually-rich format designed for the way your brain works. Using the latest research in neurobiology, cognitive science, and learning theory, this book will load HTML and CSS into your brain in a way that sticks. So what are you waiting for? Leave those other dusty books behind and come join us in Webville. Your tour is about to begin.
The Efficiency Paradox: What Big Data Can't Do
Edward Tenner - 2018
One of the great promises of the Internet and big data revolutions is the idea that we can improve the processes and routines of our work and personal lives to get more done in less time than ever before. There is no doubt that we're performing at higher scales and going faster than ever, but what if we're headed in the wrong direction?The Efficiency Paradox questions our ingrained assumptions about efficiency, persuasively showing how relying on the algorithms of platforms can in fact lead to wasted efforts, missed opportunities, and above all an inability to break out of established patterns. Edward Tenner offers a smarter way to think about efficiency, showing how we can combine artificial intelligence and our own intuition, leaving ourselves and our institutions open to learning from the random and unexpected.
Introduction to Artificial Intelligence
Philip C. Jackson Jr. - 1974
Introduction to Artificial Intelligence presents an introduction to the science of reasoning processes in computers, and the research approaches and results of the past two decades. You'll find lucid, easy-to-read coverage of problem-solving methods, representation and models, game playing, automated understanding of natural languages, heuristic search theory, robot systems, heuristic scene analysis and specific artificial-intelligence accomplishments. Related subjects are also included: predicate-calculus theorem proving, machine architecture, psychological simulation, automatic programming, novel software techniques, industrial automation and much more.A supplementary section updates the original book with major research from the decade 1974-1984. Abundant illustrations, diagrams and photographs enhance the text, and challenging practice exercises at the end of each chapter test the student's grasp of each subject.The combination of introductory and advanced material makes Introduction to Artificial Intelligence ideal for both the layman and the student of mathematics and computer science. For anyone interested in the nature of thought, it will inspire visions of what computer technology might produce tomorrow.
Data Science For Dummies
Lillian Pierson - 2014
Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of their organization’s massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you’ll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization. Provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis Details different data visualization techniques that can be used to showcase and summarize your data Explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques Includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark It’s a big, big data world out there – let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.
Artificial Intelligence for Games (The Morgan Kaufmann Series in Interactive 3D Technology)
Ian Millington - 2006
The commercial success of a game is often dependent upon the quality of the AI, yet the engineering of AI is often begun late in the development process and is frequently misunderstood. In this book, Ian Millington brings extensive professional experience to the problem of improving the quality of AI in games. A game developer since 1987, he was founder of Mindlathe Ltd., at the time the largest specialist AI company in gaming. Ian shows how to think about AI as an integral part of game play. He describes numerous examples from real games and explores the underlying ideas through detailed case studies. He goes further to introduce many techniques little used by developers today. The book's CD-ROM contains a library of C++ source code and demonstration programs, and provides access to a website with a complete commercial source code library of AI algorithms and techniques. * A comprehensive, professional tutorial and reference to implement true AI in games.* Walks through the entire development process from beginning to end.* Includes over 100 pseudo code examples of techniques used in commercial games, case studies for all major genres, a CD-ROM and companion website with extensive C++ source code implementations for Windows, and source code libraries for Linux and OS X available through the website.
Machine, Platform, Crowd: Harnessing Our Digital Future
Andrew McAfee - 2017
Now they’ve written a guide to help readers make the most of our collective future. Machine | Platform | Crowd outlines the opportunities and challenges inherent in the science fiction technologies that have come to life in recent years, like self-driving cars and 3D printers, online platforms for renting outfits and scheduling workouts, or crowd-sourced medical research and financial instruments.
Data Smart: Using Data Science to Transform Information into Insight
John W. Foreman - 2013
Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
Taming Text: How to Find, Organize, and Manipulate It
Grant S. Ingersoll - 2011
This causes real problems for everyday users who need to make sense of all the information available, and for software engineers who want to make their text-based applications more useful and user-friendly. Whether building a search engine for a corporate website, automatically organizing email, or extracting important nuggets of information from the news, dealing with unstructured text can be daunting.Taming Text is a hands-on, example-driven guide to working with unstructured text in the context of real-world applications. It explores how to automatically organize text, using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization. This book gives examples illustrating each of these topics, as well as the foundations upon which they are built.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
R Graphics Cookbook: Practical Recipes for Visualizing Data
Winston Chang - 2012
Each recipe tackles a specific problem with a solution you can apply to your own project, and includes a discussion of how and why the recipe works.Most of the recipes use the ggplot2 package, a powerful and flexible way to make graphs in R. If you have a basic understanding of the R language, you're ready to get started.Use R's default graphics for quick exploration of dataCreate a variety of bar graphs, line graphs, and scatter plotsSummarize data distributions with histograms, density curves, box plots, and other examplesProvide annotations to help viewers interpret dataControl the overall appearance of graphicsRender data groups alongside each other for easy comparisonUse colors in plotsCreate network graphs, heat maps, and 3D scatter plotsStructure data for graphing