Book picks similar to
Critical Code Studies by Mark C. Marino
technology
tech-ethics
ai
next
Advanced Rails Recipes
Mike Clark - 2007
Fueled by significant benefits and an impressive portfolio of real-world applications already in production, Rails is destined to continue making significant inroads in coming years.Each new Rails application showing up on the web adds yet more to the collective wisdom of the Rails development community. Yesterday's best practices yield to today's latest and greatest techniques, as the state of the art is continually refined in kitchens all across the Internet. Indeed, these are times of great progress.At the same time, it's easy to get left behind in the wake of progress. Advanced Rails Recipes keeps you on the cutting edge of Rails development and, more importantly, continues to turn this fast-paced framework to your advantage.Advanced Rails Recipes is filled with pragmatic recipes you'll use on every Rails project. And by taking the code in these recipes and slipping it into your application you'll not only deliver your application quicker, you'll do so with the confidence that it's done right.The book includes contributions from Aaron Batalion, Adam Keys, Adam Wiggins, Andre Lewis, Andrew Kappen, Benjamin Curtis, Ben Smith, Chris Bernard, Chris Haupt, Chris Wanstrath, Cody Fauser, Dan Benjamin, Dan Manges, Daniel Fischer, David Bock, David Chelimsky, David Heinemeier Hansson, Erik Hatcher, Ezra Zygmuntowicz, Geoffrey Grosenbach, Giles Bowkett, Greg Hansen, Gregg Pollack, Hemant Kumar, Hugh Bien, Jamie Orchard-Hays, Jamis Buck, Jared Haworth, Jarkko Laine, Jason LaPier, Jay Fields, John Dewey, Jonathan Dahl, Josep Blanquer, Josh Stephenson, Josh Susser, Kevin Clark, Luke Francl, Mark Bates, Marty Haught, Matthew Bass, Michael Slater, Mike Clark, Mike Hagedorn, Mike Mangino, Mike Naberezny, Mike Subelsky, Nathaniel Talbott, PJ Hyett, Patrick Reagan, Peter Marklund, Pierre-Alexandre Meyer, Rick Olson, Ryan Bates, Scott Barron, Tony Primerano, Val Aleksenko, and Warren Konkel.
Introduction to Artificial Intelligence
Philip C. Jackson Jr. - 1974
Introduction to Artificial Intelligence presents an introduction to the science of reasoning processes in computers, and the research approaches and results of the past two decades. You'll find lucid, easy-to-read coverage of problem-solving methods, representation and models, game playing, automated understanding of natural languages, heuristic search theory, robot systems, heuristic scene analysis and specific artificial-intelligence accomplishments. Related subjects are also included: predicate-calculus theorem proving, machine architecture, psychological simulation, automatic programming, novel software techniques, industrial automation and much more.A supplementary section updates the original book with major research from the decade 1974-1984. Abundant illustrations, diagrams and photographs enhance the text, and challenging practice exercises at the end of each chapter test the student's grasp of each subject.The combination of introductory and advanced material makes Introduction to Artificial Intelligence ideal for both the layman and the student of mathematics and computer science. For anyone interested in the nature of thought, it will inspire visions of what computer technology might produce tomorrow.
Data Smart: Using Data Science to Transform Information into Insight
John W. Foreman - 2013
Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
Product Design for the Web: Principles of Designing and Releasing Web Products
Randy J. Hunt - 2013
To create a successful web product that's as large as Etsy, Facebook, Twitter, or Pinterest-or even as small as a tiny app-you need to know more than just HTML and CSS. You need to understand how to create meaningful online experiences so that users want to come back again and again.In other words, you have to stop thinking like a web designer or a visual designer or a UX designer or an interaction designer and start thinking like a product designer.In this breakthrough introduction to modern product design, Etsy Creative Director Randy Hunt explains the skills, processes, types of tools, and recommended workflows for creating world-class web products. After reading this book, you'll have a complete understanding of what product design really is and you'll be equipped with the best practices necessary for building your own successful online products.
Being Digital
Nicholas Negroponte - 1995
Negroponte's fans will want to get a copy of Being Digital, which is an edited version of the 18 articles he wrote for Wired about "being digital." Negroponte's text is mostly a history of media technology rather than a set of predictions for future technologies. In the beginning, he describes the evolution of CD-ROMs, multimedia, hypermedia, HDTV (high-definition television), and more. The section on interfaces is informative, offering an up-to-date history on visual interfaces, graphics, virtual reality (VR), holograms, teleconferencing hardware, the mouse and touch-sensitive interfaces, and speech recognition. In the last chapter and the epilogue, Negroponte offers visionary insight on what "being digital" means for our future. Negroponte praises computers for their educational value but recognizes certain dangers of technological advances, such as increased software and data piracy and huge shifts in our job market that will require workers to transfer their skills to the digital medium. Overall, Being Digital provides an informative history of the rise of technology and some interesting predictions for its future.
Smart Machines: IBM's Watson and the Era of Cognitive Computing
John E. Kelly III - 2013
The victory of IBM's Watson on the television quiz show Jeopardy! revealed how scientists and engineers at IBM and elsewhere are pushing the boundaries of science and technology to create machines that sense, learn, reason, and interact with people in new ways to provide insight and advice.In Smart Machines, John E. Kelly III, director of IBM Research, and Steve Hamm, a writer at IBM and a former business and technology journalist, introduce the fascinating world of "cognitive systems" to general audiences and provide a window into the future of computing. Cognitive systems promise to penetrate complexity and assist people and organizations in better decision making. They can help doctors evaluate and treat patients, augment the ways we see, anticipate major weather events, and contribute to smarter urban planning. Kelly and Hamm's comprehensive perspective describes this technology inside and out and explains how it will help us conquer the harnessing and understanding of "big data," one of the major computing challenges facing businesses and governments in the coming decades. Absorbing and impassioned, their book will inspire governments, academics, and the global tech industry to work together to power this exciting wave in innovation.
The Spatial Web: How Web 3.0 Will Connect Humans, Machines, and AI to Transform the World
Gabriel Rene - 2019
Blade Runner, The Matrix, Star Wars, Avatar, Star Trek, Ready Player One and Avengers show us futuristic worlds where holograms, intelligent robots, smart devices, virtual avatars, digital transactions, and universe-scale teleportation work together perfectly, somehow seamlessly combining the virtual and the physical with the mechanical and the biological. Science fiction has done an excellent job describing a vision of the future where the digital and physical merge naturally into one — in a way that just works everywhere, for everyone. However, none of these visionary fictional works go so far as to describe exactly how this would actually be accomplished. While it has inspired many of us to ask the question—How do we enable science fantasy to become....science fact? The Spatial Web achieves this by first describing how exponentially powerful computing technologies are creating a great “Convergence.” How Augmented and Virtual Reality will enable us to overlay our information and imaginations onto the world. How Artificial Intelligence will infuse the environments and objects around us with adaptive intelligence. How the Internet of Things and Robotics will enable our vehicles, appliances, clothing, furniture, and homes to become connected and embodied with the power to see, feel, hear, smell, touch and move things in the world, and how Blockchain and Cryptocurrencies will secure our data and enable real-time transactions between the human, machine and virtual economies of the future. The book then dives deeply into the challenges and shortcomings of the World Wide Web, the rise of fake news and surveillance capitalism in Web 2.0 and the risk of algorithmic terrorism and biological hacking and “fake-reality” in Web 3.0. It raises concerns about the threat that emerging technologies pose in the hands of rogue actors whether human, algorithmic, corporate or state-sponsored and calls for common sense governance and global cooperation. It calls for business leaders, organizations and governments to not only support interoperable standards for software code, but critically, for ethical, and social codes as well. Authors Gabriel René and Dan Mapes describe in vivid detail how a new “spatial” protocol is required in order to connect the various exponential technologies of the 21st century into an integrated network capable of tracking and managing the real-time activities of our cities, monitoring and adjusting the supply chains that feed them, optimizing our farms and natural resources, automating our manufacturing and distribution, transforming marketing and commerce, accelerating our global economies, running advanced planet-scale simulations and predictions, and even bridging the gap between our interior individual reality and our exterior collective one. Enabling the ability for humans, machines and AI to communicate, collaborate and coordinate activities in the world at a global scale and how the thoughtful application of these technologies could lead to an unprecedented opportunity to create a truly global “networked” civilization or "Smart World.” The book artfully shifts between cyberpunk futurism, cautionary tale-telling, and life-affirming call-to-arms. It challenges us to consider the importance of today’s technological choices as individuals, organizations, and as a species, as we face the historic opportunity we have to transform the web, the world, and our very definition of reality.
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Here Comes Everybody: The Power of Organizing Without Organizations
Clay Shirky - 2008
'Here Comes Everybody' is an examination of how the spread of new forms of social interaction enabled by technology is changing the way humans form and exist within groups, with profound long-term economic and social effects, for good and for ill.
Data Feminism
Catherine D’Ignazio - 2020
It has been used to expose injustice, improve health outcomes, and topple governments. But it has also been used to discriminate, police, and surveil. This potential for good, on the one hand, and harm, on the other, makes it essential to ask: Data science by whom? Data science for whom? Data science with whose interests in mind? The narratives around big data and data science are overwhelmingly white, male, and techno-heroic. In Data Feminism, Catherine D'Ignazio and Lauren Klein present a new way of thinking about data science and data ethics—one that is informed by intersectional feminist thought.Illustrating data feminism in action, D'Ignazio and Klein show how challenges to the male/female binary can help challenge other hierarchical (and empirically wrong) classification systems. They explain how, for example, an understanding of emotion can expand our ideas about effective data visualization, and how the concept of invisible labor can expose the significant human efforts required by our automated systems. And they show why the data never, ever “speak for themselves.”Data Feminism offers strategies for data scientists seeking to learn how feminism can help them work toward justice, and for feminists who want to focus their efforts on the growing field of data science. But Data Feminism is about much more than gender. It is about power, about who has it and who doesn't, and about how those differentials of power can be challenged and changed.
Tomorrowland: Our Staggering Journey from Science Fiction to Science Fact
Steven Kotler - 2015
Now he gathers the best of his best, updated and expanded upon, to guide readers on a mind-bending tour of the far frontier, and how these advances are radically transforming our lives. From the ways science and technology are fundamentally altering our bodies and our world (the world’s first bionic soldier, the future of evolution) to those explosive collisions between science and culture (life extension and bioweapons), we’re crossing moral and ethical lines we’ve never faced before.As Kotler writes, “Life is tricky sport—and that's the emotional core of this story, the real reason we can’t put Pandora back in the box. When you strip everything else away, technology is nothing more than the promise of an easier tomorrow. It’s the promise of hope. And how do you stop hope?”Join Kotler in this fascinating exploration of our incredible next: a deep dive into those future technologies happening now—and what it means to be a part of this brave new world.
Head First Object-Oriented Analysis and Design: A Brain Friendly Guide to OOA&D
Brett McLaughlin - 2006
What sets this book apart is its focus on learning. The authors have made the content of OOAD accessible, usable for the practitioner." Ivar Jacobson, Ivar Jacobson Consulting"I just finished reading HF OOA&D and I loved it! The thing I liked most about this book was its focus on why we do OOA&D-to write great software!" Kyle Brown, Distinguished Engineer, IBM"Hidden behind the funny pictures and crazy fonts is a serious, intelligent, extremely well-crafted presentation of OO Analysis and Design. As I read the book, I felt like I was looking over the shoulder of an expert designer who was explaining to me what issues were important at each step, and why." Edward Sciore, Associate Professor, Computer Science Department, Boston College Tired of reading Object Oriented Analysis and Design books that only makes sense after you're an expert? You've heard OOA&D can help you write great software every time-software that makes your boss happy, your customers satisfied and gives you more time to do what makes you happy.But how?Head First Object-Oriented Analysis & Design shows you how to analyze, design, and write serious object-oriented software: software that's easy to reuse, maintain, and extend; software that doesn't hurt your head; software that lets you add new features without breaking the old ones. Inside you will learn how to:Use OO principles like encapsulation and delegation to build applications that are flexible Apply the Open-Closed Principle (OCP) and the Single Responsibility Principle (SRP) to promote reuse of your code Leverage the power of design patterns to solve your problems more efficiently Use UML, use cases, and diagrams to ensure that all stakeholders are communicating clearly to help you deliver the right software that meets everyone's needs.By exploiting how your brain works, Head First Object-Oriented Analysis & Design compresses the time it takes to learn and retain complex information. Expect to have fun, expect to learn, expect to be writing great software consistently by the time you're finished reading this!
Programming Collective Intelligence: Building Smart Web 2.0 Applications
Toby Segaran - 2002
With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases