Think Bayes


Allen B. Downey - 2012
    

Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being


George Lakoff - 2000
    Abstract ideas, for the most part, arise via conceptual metaphor-metaphorical ideas projecting from the way we function in the everyday physical world. Where Mathematics Comes From argues that conceptual metaphor plays a central role in mathematical ideas within the cognitive unconscious-from arithmetic and algebra to sets and logic to infinity in all of its forms.

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

MacArthur's Luck: The race for Berlin is on! (The Fortunes of War)


Steven H. Newton - 2017
    His successor as US Army Chief of Staff, General Douglas MacArthur, flies halfway around the world to butt heads with Josef Stalin and change history.When MacArthur relieves General Dwight D. Eisenhower from command in Europe, the Anglo-Allied advance devolves into a free-for-all as competing armies race for Berlin, and the changes echo across the globe. Here are just a few of the highlights from MacArthur’s Luck:Captain Jackie Robinson leads an armored task force across the Rhine. ...Major Barry Goldwater fire-bombs Tokyo. ...Commander Robert Heinlein struggles to save his wounded ship from kamikazes off Okinawa. ...Field Marshals Georgi Zhukov and Ivan Konev clash on the road to Berlin. ...SS-Obergruppenfuehrer Karl Wolff dares everything to negotiate a separate surrender to the Americans. ...Populated by a cast of realistic characters who will take you inside the American, German, Soviet, and Japanese military machines, and meticulously researched by a well-known military historian, MacArthur’s Luck opens The Fortunes of War series, exploring a world both tantalizingly like our own, but also dramatically different.Half the fun is figuring out what’s real, and what’s not.

A Book of Abstract Algebra


Charles C. Pinter - 1982
    Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. Intended for undergraduate courses in abstract algebra, it is suitable for junior- and senior-level math majors and future math teachers. This second edition features additional exercises to improve student familiarity with applications. An introductory chapter traces concepts of abstract algebra from their historical roots. Succeeding chapters avoid the conventional format of definition-theorem-proof-corollary-example; instead, they take the form of a discussion with students, focusing on explanations and offering motivation. Each chapter rests upon a central theme, usually a specific application or use. The author provides elementary background as needed and discusses standard topics in their usual order. He introduces many advanced and peripheral subjects in the plentiful exercises, which are accompanied by ample instruction and commentary and offer a wide range of experiences to students at different levels of ability.

An Introduction to Non-Classical Logic


Graham Priest - 2001
    Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.

Game Theory


Drew Fudenberg - 1991
    The analytic material is accompanied by many applications, examples, and exercises. The theory of noncooperative games studies the behavior of agents in any situation where each agent's optimal choice may depend on a forecast of the opponents' choices. "Noncooperative" refers to choices that are based on the participant's perceived selfinterest. Although game theory has been applied to many fields, Fudenberg and Tirole focus on the kinds of game theory that have been most useful in the study of economic problems. They also include some applications to political science. The fourteen chapters are grouped in parts that cover static games of complete information, dynamic games of complete information, static games of incomplete information, dynamic games of incomplete information, and advanced topics.--mitpress.mit.edu

The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation


Gary William Flake - 1998
    Distinguishing agents (e.g., molecules, cells, animals, and species) from their interactions (e.g., chemical reactions, immune system responses, sexual reproduction, and evolution), Flake argues that it is the computational properties of interactions that account for much of what we think of as beautiful and interesting. From this basic thesis, Flake explores what he considers to be today's four most interesting computational topics: fractals, chaos, complex systems, and adaptation.Each of the book's parts can be read independently, enabling even the casual reader to understand and work with the basic equations and programs. Yet the parts are bound together by the theme of the computer as a laboratory and a metaphor for understanding the universe. The inspired reader will experiment further with the ideas presented to create fractal landscapes, chaotic systems, artificial life forms, genetic algorithms, and artificial neural networks.

Gravitation


Charles W. Misner - 1973
    These sections together make an appropriate one-term advanced/graduate level course (mathematical prerequisites: vector analysis and simple partial-differential equations). The book is printed to make it easy for readers to identify these sections.• The remaining Track 2 material provides a wealth of advanced topics instructors can draw from to flesh out a two-term course, with Track 1 sections serving as prerequisites.

Count Down: Six Kids Vie for Glory at the World's Toughest Math Competition


Steve Olson - 2004
    Steve Olson followed the six 2001 contestants from the intense tryouts to the Olympiad’s nail-biting final rounds to discover not only what drives these extraordinary kids but what makes them both unique and typical. In the process he provides fascinating insights into the science of intelligence and learning and, finally, the nature of genius. Brilliant, but defying all the math-nerd stereotypes, these teens want to excel in whatever piques their curiosity, and they are curious about almost everything — music, games, politics, sports, literature. One team member is ardent about both water polo and creative writing. Another plays four musical instruments. For fun and entertainment during breaks, the Olympians invent games of mind-boggling difficulty. Though driven by the glory of winning this ultimate math contest, they are in many ways not so different from other teenagers, finding pure joy in indulging their personal passions. Beyond the the Olympiad, Olson sheds light on many questions, from why Americans feel so queasy about math, to why so few girls compete in the subject, to whether or not talent is innate. Inside the cavernous gym where the competition takes place, Count Down uncovers a fascinating subculture and its engaging, driven inhabitants.

How Numbers Work: Discover the Strange and Beautiful World of Mathematics (New Scientist Instant Expert)


New Scientist - 2018
    No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends.The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the "imaginary" number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it?How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.

Numbers Guide: The Essentials of Business Numeracy


Richard Stutely - 1998
    In addition to general advice on basic numeracy, the guide points out common errors and explains the recognized techniques for solving financial problems, analysing information of any kind, and effective decision making. Over one hundred charts, graphs, tables, and feature boxes highlight key points. Also included is an A-Z dictionary of terms covering everything from amortization to zero-sum game. Whatever your business, The Economist Numbers Guide will prove invaluable.

The Adventures of a Pumpkin and a Running Back Boy (I Sold Myself to the Devil for Vinyls...Pitiful I Know #2.5)


Kay Darali (DarknessAndLight) - 2016
    Because their love story is too interesting to ever have a end.Follow Blake and Lexi through the years!

Topology


James R. Munkres - 1975
    Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.

75 Worksheets for Daily Math Practice: Addition, Subtraction, Multiplication, Division: Maths Workbook


Kapoo Stem - 2014
    There is one worksheet for each type of math problem including different digits with operations of addition, subtraction, multiplication and division. These varying level of mathematical ability activities help in improving adding, subtracting, multiplying and dividing operation skills of the student by frequent practicing of the worksheets provided.There is nothing more effective than a pencil and paper for practicing some math skills. These math worksheets are ideal for teachers, parents, students, and home schoolers. The companion ebook allows you to take print outs of these worksheets instantly or you can save them for later use. The learner can significantly improve math knowledge by developing a simple habit to daily practice the math drills.Tutors and homeschoolers use the maths worksheets to test and measure the child's mastery of basic math skills. These math drill sheets can save you precious planning time when homeschooling as you can use these work sheets to give extra practice of essential math skills. Parents use these mathematics worksheets for their kids homework practice too.Designed for after school study and self study, it is used by homeschooler, special needs and gifted kids to add to the learning experience in positive ways. You can also use the worksheets during the summer to get your children ready for the upcoming school term. It helps your child excel in school as well as in building good study habits. If a workbook or mathematic textbook is not allowing for much basic practise, these sheets give you the flexibility to follow the practice that your student needs for an education curriculum.These worksheets are not designed to be grade specific for students, rather depend on how much practice they've had at the skill in the past and how the curriculum in your school is organized. Kids work at their own level and their own pace through these activities. The learner can practice one worksheet a day, two worksheets a day, one every alternate day, one per week, two per week or can follow any consistent pattern. Make best use of your judgement.