How Not to Be Wrong: The Power of Mathematical Thinking


Jordan Ellenberg - 2014
    In How Not to Be Wrong, Jordan Ellenberg shows us how terribly limiting this view is: Math isn’t confined to abstract incidents that never occur in real life, but rather touches everything we do—the whole world is shot through with it.Math allows us to see the hidden structures underneath the messy and chaotic surface of our world. It’s a science of not being wrong, hammered out by centuries of hard work and argument. Armed with the tools of mathematics, we can see through to the true meaning of information we take for granted: How early should you get to the airport? What does “public opinion” really represent? Why do tall parents have shorter children? Who really won Florida in 2000? And how likely are you, really, to develop cancer?How Not to Be Wrong presents the surprising revelations behind all of these questions and many more, using the mathematician’s method of analyzing life and exposing the hard-won insights of the academic community to the layman—minus the jargon. Ellenberg chases mathematical threads through a vast range of time and space, from the everyday to the cosmic, encountering, among other things, baseball, Reaganomics, daring lottery schemes, Voltaire, the replicability crisis in psychology, Italian Renaissance painting, artificial languages, the development of non-Euclidean geometry, the coming obesity apocalypse, Antonin Scalia’s views on crime and punishment, the psychology of slime molds, what Facebook can and can’t figure out about you, and the existence of God.Ellenberg pulls from history as well as from the latest theoretical developments to provide those not trained in math with the knowledge they need. Math, as Ellenberg says, is “an atomic-powered prosthesis that you attach to your common sense, vastly multiplying its reach and strength.” With the tools of mathematics in hand, you can understand the world in a deeper, more meaningful way. How Not to Be Wrong will show you how.

Math Appeal: Mind-Stretching Math Riddles


Greg Tang - 2003
    Keeping an open mind, looking for unusual number combinations, using multiple skills (like subtracting to add) and looking for patterns will guarantee any child success in math. In MATH APPEAL, Tang continues to challenge kids with his innovative approach to math.

A Place for Wonder: Reading and Writing Nonfiction in the Primary Grades


Georgia Heard - 2009
    For it is these characteristics, the authors write, that develop intelligent, inquiring, life-long learners. The authors’ research shows that many primary grade state standards encourage teaching for understanding, critical thinking, creativity, and question asking, and promote the development of children who have the attributes of inventiveness, curiosity, engagement, imagination, and creativity. With these goals in mind, Georgia and Jennifer provide teachers with numerous, practical ways—setting up “wonder centers,” gathering data though senses, teaching nonfiction craft—they can create a classroom environment where student’s questions and observations are part of daily work.    They also present a step-by-step guide to planning a nonfiction reading and writing unit of study—creating a nonfiction book, which includes creating a table of contents, writing focused chapters, using “wow” words, and developing point of view. A Place for Wonder will help teachers reclaim their classrooms as a place where true learning is the norm.

Genius: The Game


Leopoldo Gout - 2016
    Every camera is an eye. Every microphone an ear. Find me and we can stop him together.The Game: Get ready for Zero Hour as 200 geniuses from around the world go head to head in a competition hand-devised by India's youngest CEO and visionary.The Players:Rex- One of the best programmers/hackers in the world, this 16-year-old Mexican-American is determined to find his missing brother.Tunde- This 14-year-old self-taught engineering genius has drawn the attention of a ruthless military warlord by single-handedly bringing electricity and internet to his small Nigerian village.Painted Wolf- One of China's most respected activist bloggers, this mysterious 16-year-old is being pulled into the spotlight by her father's new deal with a corrupt Chinese official.The Stakes: Are higher than you can imagine. Like life and death. Welcome to the revolution. And get ready to run.

Calculus, Better Explained: A Guide To Developing Lasting Intuition


Kalid Azad - 2015
     Learn the essential concepts using concrete analogies and vivid diagrams, not mechanical definitions. Calculus isn't a set of rules, it's a specific, practical viewpoint we can apply to everyday thinking. Frustrated With Abstract, Mechanical Lessons? I was too. Despite years of classes, I didn't have a strong understanding of calculus concepts. Sure, I could follow mechanical steps, but I had no lasting intuition. The classes I've seen are too long, taught in the wrong order, and without solid visualizations. Here's how this course is different: 1) It gets to the point. A typical class plods along, saving concepts like Integrals until Week 8. I want to see what calculus can offer by Minute 8. Each compact, tightly-written lesson can be read in 15 minutes. 2) Concepts are taught in their natural order. Most classes begin with the theory of limits, a technical concept discovered 150 years after calculus was invented. That's like putting a new driver into a Formula-1 racecar on day 1. We can begin with the easy-to-grasp concepts discovered 2000 years ago. 3) It has vivid analogies and visualizations. Calculus is usually defined as the "study of change"... which sounds like history or geology. Instead of an abstract definition, we'll see calculus a step-by-step viewpoint to explore patterns. 4) It's written by a human, for humans. I'm not a haughty professor or strict schoolmarm. I'm a friend who saw a fun way to internalize some difficult ideas. This course is a chat over coffee, not a keep-your-butt-in-your-seat lecture. The goal is to help you grasp the Aha! moments behind calculus in hours, not a painful semester (or a decade, in my case). Join Thousands Of Happy Readers Here's a few samples of anonymous feedback as people went through the course. The material covers a variety of levels, whether you're looking for intuitive appreciation or the specifics of the rules. "I've done all of this stuff before, and I do understand calculus intuitively, but this was the most fun I've had going through this kind of thing. The informal writing and multitude of great analogies really helps this become an enjoyable read and the rest is simple after that - you make this seem easy, but at the same time, you aren't doing it for us…This is what math education is supposed to be like :)" "I have psychology and medicine background so I relate your ideas to my world. To me the most useful idea was what each circle production feels like. Rings are natural growth…Slices are automatable chunks and automation cheapens production… Boards in the shape on an Arch are psychologically most palatable for work (wind up, hard part, home stretch). Brilliant and kudos, from one INTP to another." "I like how you're introducing both derivatives and integrals at the same time - it's really helps with understanding the relationship between them. Also, I appreciate how you're coming from such a different angle than is traditionally taken - it's always interesting to see where you decide to go next." "That was breathtaking. Seriously, mail my air back please, I've grown used to it. Beautiful work, thank you. Lesson 15 was masterful. I am starting to feel calculus. "d/dx is good" (sorry, couldn't resist!)."

The New Cool: A Visionary Teacher, His FIRST Robotics Team, and the Ultimate Battle of Smarts


Neal Bascomb - 2010
    students who wanted to put their technical know-how to work.  If you asked these brainiacs what the stakes were that first week of their project, they’d have told you it was all about winning a robotics competition – building the ultimate robot and prevailing in a machine-to-machine contest in front of 25,000 screaming fans at Atlanta’s Georgia Dome. But for their mentor, Amir Abo-Shaeer, much more hung in the balance.  The fact was, Amir had in mind a different vision for education, one based not on rote learning -- on absorbing facts and figures -- but on active creation.  In his mind’s eye, he saw an even more robust academy within Dos Pueblos that would make science, technology, engineering, and math (STEM) cool again, and he knew he was poised on the edge of making that dream a reality.  All he needed to get the necessary funding was one flashy win – a triumph that would firmly put his Engineering Academy at Dos Pueblos on the map.  He imagined that one day there would be a nation filled with such academies, and a new popular veneration for STEM – a “new cool” – that would return America to its former innovative glory. It was a dream shared by Dean Kamen, a modern-day inventing wizard – often-called “the Edison of his time” – who’d concocted the very same FIRST Robotics Competition that had lured the kids at Dos Pueblos.  Kamen had created FIRST (For Inspiration and Recognition of Science and Technology) nearly twenty years prior.  And now, with a participant alumni base approaching a million strong, he felt that awareness was about to hit critical mass.   But before the Dos Pueblos D’Penguineers could do their part in bringing a new cool to America, they’d have to vanquish an intimidating lineup of “super-teams”– high-school technology goliaths that hailed from engineering hot spots such as Silicon Valley, Massachusetts’ Route 128 technology corridor, and Michigan’s auto-design belt.  Some of these teams were so good that winning wasn’t just hoped for every year, it was expected. In The New Cool, Neal Bascomb manages to make even those who know little about – or are vaguely suspicious of – technology care passionately about a team of kids questing after a different kind of glory.  In these kids’ heartaches and headaches – and yes, high-five triumphs -- we glimpse the path not just to a new way of educating our youth but of honoring the crucial skills a society needs to prosper.  A new cool.

Everyday Calculus: Discovering the Hidden Math All Around Us


Oscar E. Fernandez - 2014
    For some of us, the word conjures up memories of ten-pound textbooks and visions of tedious abstract equations. And yet, in reality, calculus is fun, accessible, and surrounds us everywhere we go. In Everyday Calculus, Oscar Fernandez shows us how to see the math in our coffee, on the highway, and even in the night sky.Fernandez uses our everyday experiences to skillfully reveal the hidden calculus behind a typical day's events. He guides us through how math naturally emerges from simple observations-how hot coffee cools down, for example-and in discussions of over fifty familiar events and activities. Fernandez demonstrates that calculus can be used to explore practically any aspect of our lives, including the most effective number of hours to sleep and the fastest route to get to work. He also shows that calculus can be both useful-determining which seat at the theater leads to the best viewing experience, for instance-and fascinating-exploring topics such as time travel and the age of the universe. Throughout, Fernandez presents straightforward concepts, and no prior mathematical knowledge is required. For advanced math fans, the mathematical derivations are included in the appendixes.Whether you're new to mathematics or already a curious math enthusiast, Everyday Calculus invites you to spend a day discovering the calculus all around you. The book will convince even die-hard skeptics to view this area of math in a whole new way.

A Book of Abstract Algebra


Charles C. Pinter - 1982
    Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. Intended for undergraduate courses in abstract algebra, it is suitable for junior- and senior-level math majors and future math teachers. This second edition features additional exercises to improve student familiarity with applications. An introductory chapter traces concepts of abstract algebra from their historical roots. Succeeding chapters avoid the conventional format of definition-theorem-proof-corollary-example; instead, they take the form of a discussion with students, focusing on explanations and offering motivation. Each chapter rests upon a central theme, usually a specific application or use. The author provides elementary background as needed and discusses standard topics in their usual order. He introduces many advanced and peripheral subjects in the plentiful exercises, which are accompanied by ample instruction and commentary and offer a wide range of experiences to students at different levels of ability.

How to Ace Calculus: The Streetwise Guide


Colin Conrad Adams - 1998
    Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams—all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.

A Brief History of Mathematics


Marcus du Sautoy - 2011
    Professor Marcus du Sautoy shows how these masters of abstraction find a role in the real world and proves that mathematics is the driving force behind modern science. He explores the relationship between Newton and Leibniz, the men behind the calculus; looks at how the mathematics that Euler invented 200 years ago paved the way for the internet and discovers how Fourier transformed our understanding of heat, light and sound. In addition, he finds out how Galois’ mathematics describes the particles that make up our universe, how Gaussian distribution underpins modern medicine, and how Riemann’s maths helped Einstein with his theory of relativity. Finally, he introduces Cantor, who discovered infinite numbers; Poincaré, whose work gave rise to chaos theory; G.H. Hardy, whose work inspired the millions of codes that help to keep the internet safe, and Nicolas Bourbaki, the mathematician who never was. The BBC Radio 4 series looking at the people who shaped modern mathematics, written and presented by Marcus du Sautoy. 1 CDs, 150 minutes

Number: The Language of Science


Tobias Dantzig - 1930
    Tobias Dantzig shows that the development of math—from the invention of counting to the discovery of infinity—is a profoundly human story that progressed by “trying and erring, by groping and stumbling.” He shows how commerce, war, and religion led to advances in math, and he recounts the stories of individuals whose breakthroughs expanded the concept of number and created the mathematics that we know today.

Mathematics


Keith Devlin - 1988
    A modern classic by an accomplished mathematician and best-selling author has been updated to encompass and explain the recent headline-making advances in the field in non-technical terms.

Bedtime Math: A Fun Excuse to Stay Up Late


Laura Overdeck - 2013
    Inside this book, families will find fun, mischief-making math problems to tackle—math that isn't just kid-friendly, but actually kid-appealing. With over 100 math riddles on topics from jalapeños and submarines to roller coasters and flamingos, this book bursts with math that looks nothing like school. And with three different levels of challenge (wee ones, little kids, and big kids), there's something for everyone. We can make numbers fun, and change the world, one Bedtime Math puzzle at a time.

A Mind for Numbers: How to Excel at Math and Science (Even If You Flunked Algebra)


Barbara Oakley - 2014
    Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. She flunked her way through high school math and science courses, before enlisting in the army immediately after graduation. When she saw how her lack of mathematical and technical savvy severely limited her options—both to rise in the military and to explore other careers—she returned to school with a newfound determination to re-tool her brain to master the very subjects that had given her so much trouble throughout her entire life. In A Mind for Numbers, Dr. Oakley lets us in on the secrets to effectively learning math and science—secrets that even dedicated and successful students wish they’d known earlier. Contrary to popular belief, math requires creative, as well as analytical, thinking. Most people think that there’s only one way to do a problem, when in actuality, there are often a number of different solutions—you just need the creativity to see them. For example, there are more than three hundred different known proofs of the Pythagorean Theorem. In short, studying a problem in a laser-focused way until you reach a solution is not an effective way to learn math. Rather, it involves taking the time to step away from a problem and allow the more relaxed and creative part of the brain to take over. A Mind for Numbers shows us that we all have what it takes to excel in math, and learning it is not as painful as some might think!

Math Doesn't Suck: How to Survive Middle-School Math Without Losing Your Mind or Breaking a Nail


Danica McKellar - 2007
    In this fun and accessible guide, McKellar—dubbed a “math superstar” by The New York Times—gives girls and their parents the tools they need to master the math concepts that confuse middle-schoolers most, including fractions, percentages, pre-algebra, and more. The book features hip, real-world examples, step-by-step instruction, and engaging stories of Danica's own childhood struggles in math (and stardom). In addition, borrowing from the style of today's teen magazines, it even includes a Math Horoscope section, Math Personality Quizzes, and Real-Life Testimonials—ultimately revealing why math is easier and cooler than readers think.