Practical Statistics for Data Scientists: 50 Essential Concepts


Peter Bruce - 2017
    Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data

Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions


Michael G. Milton - 2009
    If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.

Computational Complexity


Christos H. Papadimitriou - 1993
    It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.

Proofs from the Book, 3e


Martin Aigner - 1998
    Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."

Language, Proof and Logic: Text and CD


Jon Barwise - 1999
    The unique on-line grading services instantly grades solutions to hundred of computer exercises. It is specially devised to be used by philosophy instructors in a way that is useful to undergraduates of philosophy, computer science, mathematics, and linguistics.The book is a completely rewritten and much improved version of The Language of First-order Logic. Introductory material is presented in a more systematic and accessible fashion. Advanced chapters include proofs of soundness and completeness for propositional and predicate logic, as well as an accessible sketch of Godel's first incompleteness theorem. The book is appropriate for a wide range of courses, from first logic courses for undergraduates (philosophy, mathematics, and computer science) to a first graduate logic course.The package includes four pieces of software:Tarski's World 5.0, a new version of the popular program that teaches the basic first-order language and its semantics; Fitch, a natural deduction proof environment for giving and checking first-order proofs;Boole, a program that facilitates the construction and checking of truth tables and related notions (tautology, tautological consequence, etc.);Submit, a program that allows students to submit exercises done with the above programs to the Grade Grinder, the automatic grading service.Grade reports are returned to the student and, if requested, to the student's instructor, eliminating the need for tedious checking of homework. All programs are available for Windows, Macintosh and Linux systems.Instructors do not need to use the programs themselves in order to be able to take advantage of their pedagogical value. More about the software can be found at lpl.stanford.edu.The price of a new text/software package includes one Registration ID, which must be used each time work is submitted to the grading service. Once activated, the Registration ID is not transferable.

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

Linux Administration Handbook


Evi Nemeth - 2006
    Several things make this one stand out. Here's the most important: Linux Administration Handbook is designed for administrators working in industrial-strength production environments. It never glosses over the "subtleties" that can get you in big trouble. It doesn't stint on technical detail. It's never satisfied with restating the man pages. And it's full of war stories from folks who've been there. Evi Nemeth and her coauthors: Boy, have they ever been there. (Just ask any gray-bearded Unix sysadmin about their earlier, legendary Unix System Administration Handbook.) There's only been one downside to Linux Administration Handbook: It's been nearly five years since it was written. Well, that flaw's just been remedied. The new Second Edition has been systematically revised for the latest administration tools (think Nagios and LVM). It's carefully targeted at today's five most widely used distributions: Red Hat Enterprise Linux 4.3, Fedora Core 5, SUSE Linux 10.2, Debian 3.2 "Etch," and Ubuntu 6.06. The result: a book you can rely on for the next five years. Rely on to do what? Just about everything. You'll find chapters on booting and shutting down; "rootly" powers; controlling processes; the Linux filesystem; on adding new users. You'll learn the most efficient ways to perform backups. How to make sense of syslogs and log files. Everything you need to know about drivers, the kernel, networking, NFS -- and Internet services, from web hosting to email. Nemeth & Company bring their experience to bear on troubleshooting, performance optimization, print management, security, Windows interoperability, even "policies and politics." Whatever Linux books you already own, if you depend on Linux to run efficiently and reliably, you need this one, too. Bill Camarda, from the December 2006 href="http://www.barnesandnoble.com/newslet... Only

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Foundations of Computer Science


Behrouz A. Forouzan - 2002
    Divided into five parts computer and data, computer hardware, computer software, data organization and with an introduction to some of the more advanced topics Foundations of Computer Science gives students a bird's eye view of the subject. Each chapter includes key terms, summaries, review questions, multiple-choice questions, and exercises to enhance learning, while introducing tools such as UML, structure chart and pseudocode, which students will need in order to succeed in later courses. The text is also supported by numerous figures, examples, exercises, selected solutions and a test bank, all designed to ease and aid the learning process. Updated to cover the latest technologies and changes to course requirements, this second edition features new and updated coverage of: Artificial Intelligence, Computer Ethics and Crimes, Networking, LINUX, and Security.

The Haskell School of Expression: Learning Functional Programming Through Multimedia


Paul Hudak - 2000
    It has become popular in recent years because of its simplicity, conciseness, and clarity. This book teaches functional programming as a way of thinking and problem solving, using Haskell, the most popular purely functional language. Rather than using the conventional (boring) mathematical examples commonly found in other programming language textbooks, the author uses examples drawn from multimedia applications, including graphics, animation, and computer music, thus rewarding the reader with working programs for inherently more interesting applications. Aimed at both beginning and advanced programmers, this tutorial begins with a gentle introduction to functional programming and moves rapidly on to more advanced topics. Details about progamming in Haskell are presented in boxes throughout the text so they can be easily found and referred to.

How Would You Move Mount Fuji? Microsoft's Cult of the Puzzle--How the World's Smartest Companies Select the Most Creative Thinkers


William Poundstone - 2003
    For the first time, William Poundstone reveals the toughest questions used at Microsoft and other Fortune 500 companies -- and supplies the answers. He traces the rise and controversial fall of employer-mandated IQ tests, the peculiar obsessions of Bill Gates (who plays jigsaw puzzles as a competitive sport), the sadistic mind games of Wall Street (which reportedly led one job seeker to smash a forty-third-story window), and the bizarre excesses of today's hiring managers (who may start off your interview with a box of Legos or a game of virtual Russian roulette). How Would You Move Mount Fuji? is an indispensable book for anyone in business. Managers seeking the most talented employees will learn to incorporate puzzle interviews in their search for the top candidates. Job seekers will discover how to tackle even the most brain-busting questions, and gain the advantage that could win the job of a lifetime. And anyone who has ever dreamed of going up against the best minds in business may discover that these puzzles are simply a lot of fun. Why are beer cans tapered on the end, anyway?

Physics for Game Developers


David M. Bourg - 2001
    Missile trajectories. Cornering dynamics in speeding cars. By applying the laws of physics, you can realistically model nearly everything in games that bounces around, flies, rolls, slides, or isn't sitting still, to create compelling, believable content for computer games, simulations, and animation. "Physics for Game Developers" serves as the starting point for those who want to enrich games with physics-based realism.Part one is a mechanics primer that reviews basic concepts and addresses aspects of rigid body dynamics, including kinematics, force, and kinetics. Part two applies these concepts to specific real-world problems, such as projectiles, boats, airplanes, and cars. Part three introduces real-time simulations and shows how they apply to computer games. Many specific game elements stand to benefit from the use of real physics, including: The trajectory of rockets and missiles, including the effects of fuel burn offThe collision of objects such as billiard ballsThe stability of cars racing around tight curvesThe dynamics of boats and other waterborne vehiclesThe flight path of a baseball after being struck by a batThe flight characteristics of airplanesYou don't need to be a physics expert to learn from "Physics for Game Developers, " but the author does assume you know basic college-level classical physics. You should also be proficient in trigonometry, vector and matrix math (reference formulas and identities are included in the appendixes), and college-level calculus, including integration and differentiation of explicit functions. Although the thrust of the book involves physics principles and algorithms, it should be noted that the examples are written in standard C and use Windows API functions.

Understanding Symbolic Logic


Virginia Klenk - 1983
    Each chapter, or unit, is divided into easily comprehended small "bites" that enable learners to master the material step-by-step, rather than being overwhelmed by masses of information covered too quickly. The book provides extremely detailed explanations of procedures and techniques, and was written in the conviction that anyone can thoroughly master its content. A four-part organization covers sentential logic, monadic predicate logic, relational predicate logic, and extra credit units that glimpse into alternative methods of logic and more advanced topics. For individuals interested in the formal study of logic.

Jumping into C++


Alex Allain - 2013
    As a professional C++ developer and former Harvard teaching fellow, I know what you need to know to be a great C++ programmer, and I know how to teach it, one step at a time. I know where people struggle, and why, and how to make it clear. I cover every step of the programming process, including:Getting the tools you need to program and how to use them*Basic language feature like variables, loops and functions*How to go from an idea to code*A clear, understandable explanation of pointers*Strings, file IO, arrays, references*Classes and advanced class design*C++-specific programming patterns*Object oriented programming*Data structures and the standard template library (STL)Key concepts are reinforced with quizzes and over 75 practice problems.