Book picks similar to
Classical Covariant Fields by Mark Burgess
field-theories
p-unsorted
tr-temp
fizika
Engineering Mathematics
S.R.K. Iyengar - 2007
Based on the experience of the authors in teaching Mathematics Courses for almost four decades at the Institute of Technology, New Delhi, this text book rather than a guide/problem book, lays emphasis on the presentation of fundamentals and theoretical concepts in an intelligible and easy to understand manner.
Godel: A Life Of Logic, The Mind, And Mathematics
John L. Casti - 2000
His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.
Superstrings And The Search For The Theory Of Everything
F. David Peat - 1988
David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.
Principles of Physics
David Halliday - 2010
A number of the key figures in the new edition are revised to provide a more inviting and informative treatment. The figures are broken into component parts with supporting commentary so that they can more readily see the key ideas. Material from The Flying Circus is incorporated into the chapter opener puzzlers, sample problems, examples and end-of-chapter problems to make the subject more engaging. Checkpoints enable them to check their understanding of a question with some reasoning based on the narrative or sample problem they just read. Sample Problems also demonstrate how engineers can solve problems with reasoned solutions.
Discrete Mathematical Structures
Bernard Kolman - 1995
It covers areas such as fundamentals, logic, counting, relations and digraphs, trees, topics in graph theory, languages and finite-state machines, and groups and coding.
Physics for Scientists and Engineers
Paul Allen Tipler - 1981
Now in its fourth edition, the work has been extensively revised, with entirely new artwork, updated examples and new pedagogical features. An interactive CD-ROM with worked examples is included. Alternatively, the material on from the CD-ROM can be down-loaded from a website (see supplements section). Twentieth-century developments such as quantum mechanics are introduced early on, so that students can appreciate their importance and see how they fit into the bigger picture.
The Unreasonable Effectiveness of Mathematics in the Natural Sciences
Eugene Paul Wigner - 1959
In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.
Partial Differential Equations for Scientists and Engineers
Stanley J. Farlow - 1982
Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.
Differential Equations with Applications and Historical Notes
George F. Simmons - 1972
Simmons advocates a careful approach to the subject, covering such topics as the wave equation, Gauss's hypergeometric function, the gamma function and the basic problems of the calculus of variations in an explanatory fashions - ensuring that students fully understand and appreciate the topics.
Einstein for Everyone
Robert L. Piccioni - 2010
Nor do you need to be a great scientist to appreciate the exciting discoveries and intriguing mysteries of our universe. Dr. Robert piccioni brings the excitement of modern scientific discoveries to general audiences. He makes the key facts and concepts understandable without "dumbing" them down. He presents them in a friendly, conversational manner and includes many personal anecdotes about the people behind the science. With 33 images and over 100 graphics, this book explains the real science behind the headlines and sound bites. Learn all about:our universe: how big? how old? what came before?the big bang, black holes and supernovaequantum mechanics and uncertaintyhow the immense and the minute are connectedwhat is special about general relativityhow mankind can become earth's best friend
Einstein's Heroes: Imagining the World Through the Language of Mathematics
Robyn Arianrhod - 2004
Einstein's Heroes takes you on a journey of discovery about just such a miraculous language--the language of mathematics--one of humanity's mostamazing accomplishments. Blending science, history, and biography, this remarkable book reveals the mysteries of mathematics, focusing on the life and work of three of Albert Einstein's heroes: Isaac Newton, Michael Faraday, and especially James Clerk Maxwell, whose work directly inspired the theory of relativity. RobynArianrhod bridges the gap between science and literature, portraying mathematics as a language and arguing that a physical theory is a work of imagination involving the elegant and clever use of this language. The heart of the book illuminates how Maxwell, using the language of mathematics in a newand radical way, resolved the seemingly insoluble controversy between Faraday's idea of lines of force and Newton's theory of action-at-a-distance. In so doing, Maxwell not only produced the first complete mathematical description of electromagnetism, but actually predicted the existence of theradio wave, teasing it out of the mathematical language itself. Here then is a fascinating look at mathematics: its colorful characters, its historical intrigues, and above all its role as the uncannily accurate language of nature.
104 Number Theory Problems: From the Training of the USA IMO Team
Titu Andreescu - 2006
Offering inspiration and intellectual delight, the problems throughout the book encourage students to express their ideas in writing to explain how they conceive problems, what conjectures they make, and what conclusions they reach. Applying specific techniques and strategies, readers will acquire a solid understanding of the fundamental concepts and ideas of number theory.
Ordinary Differential Equations
Morris Tenenbaum - 1985
Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
New Scientist: The Origin of (almost) Everything
New Scientist - 2020
If these galaxies had always been travelling, he reasoned, then they must, at some point, have been on top of one another. This discovery transformed the debate about one of the most fundamental questions of human existence - how did the universe begin?Every society has stories about the origin of the cosmos and its inhabitants, but now, with the power to peer into the early universe and deploy the knowledge gleaned from archaeology, geology, evolutionary biology and cosmology, we are closer than ever to understanding where it all came from. In The Origin of (almost) Everything, New Scientist explores the modern origin stories of everything from the Big Bang, meteorites and dark energy, to dinosaurs, civilisation, timekeeping, belly-button fluff and beyond.From how complex life evolved on Earth, to the first written language, to how humans conquered space, The Origin of (almost) Everything offers a unique history of the past, present and future of our universe.span
The Big Questions: Tackling the Problems of Philosophy with Ideas from Mathematics, Economics and Physics
Steven E. Landsburg - 2009
Stimulating, illuminating, and always surprising, The Big Questions challenges readers to re-evaluate their most fundamental beliefs and reveals the relationship between the loftiest philosophical quests and our everyday lives.