Algorithms Unlocked


Thomas H. Cormen - 2013
    For anyone who has ever wondered how computers solve problems, an engagingly written guide for nonexperts to the basics of computer algorithms.

Liquid Rules: The Delightful and Dangerous Substances That Flow Through Our Lives


Mark Miodownik - 2018
    Structured around a plane journey that sees encounters with substances from water and glue to coffee and wine, Liquid Rules shows how these liquids can bring death and destruction as well as wonder and fascination.From László Bíró's revolutionary pen and Abraham Gesner's kerosene to cutting-edge research on self-repairing roads and liquid computers, Miodownik uses his winning formula of scientific storytelling to bring the everyday to life. He reveals why liquids can flow up a tree but down a hill, why oil is sticky, how waves can travel so far, and how to make the perfect cup of tea. Here are the secret lives of substances.

Understanding Analysis


Stephen Abbott - 2000
    The aim of a course in real analysis should be to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination.

Distrust That Particular Flavor


William Gibson - 2012
    "Wired" magazine sent him to Singapore to report on one of the world's most buttoned-up states. "The New York Times Magazine" asked him to describe what was wrong with the Internet. Rolling Stone published his essay on the ways our lives are all "soundtracked" by the music and the culture around us. And in a speech at the 2010 Book Expo, he memorably described the interactive relationship between writer and reader.These essays and articles have never been collected-until now. Some have never appeared in print at all. In addition, "Distrust That Particular Flavor" includes journalism from small publishers, online sources, and magazines no longer in existence. This volume will be essential reading for any lover of William Gibson's novels. "Distrust That Particular Flavor" offers readers a privileged view into the mind of a writer whose thinking has shaped not only a generation of writers but our entire culture.

Tractatus Logico-Philosophicus


Ludwig Wittgenstein - 1921
    Written in short, carefully numbered paragraphs of extreme brilliance, it captured the imagination of a generation of philosophers. For Wittgenstein, logic was something we use to conquer a reality which is in itself both elusive and unobtainable. He famously summarized the book in the following words: 'What can be said at all can be said clearly; and what we cannot talk about we must pass over in silence.' David Pears and Brian McGuinness received the highest praise for their meticulous translation. The work is prefaced by Bertrand Russell's original introduction to the first English edition.

The Universe and the Teacup: The Mathematics of Truth and Beauty


K.C. Cole - 1998
    In The Universe and the Teacup, K. C. Cole demystifies mathematics and shows us-with humor and wonderfully accessible stories-why math need not be frightening. Using the O. J. Simpson trial, the bell curve, and Emmy Noether, the nineteenth-century woman scientist whose work was essential for Einstein's theory of relativity, Cole helps us see that more than just being a tool, math is a key to understanding the beauty of everything from rainbows to relativity.

How We'll Live on Mars


Stephen L. Petranek - 2014
    Now he makes the case that living on Mars is not just plausible, but inevitable.It sounds like science fiction, but Stephen Petranek considers it fact: Within twenty years, humans will live on Mars. We'll need to. In this sweeping, provocative book that mixes business, science, and human reporting, Petranek makes the case that living on Mars is an essential back-up plan for humanity and explains in fascinating detail just how it will happen.The race is on. Private companies, driven by iconoclastic entrepreneurs, such as Elon Musk, Jeff Bezos, Paul Allen, and Sir Richard Branson; Dutch reality show and space mission Mars One; NASA; and the Chinese government are among the many groups competing to plant the first stake on Mars and open the door for human habitation. Why go to Mars? Life on Mars has potential life-saving possibilities for everyone on earth. Depleting water supplies, overwhelming climate change, and a host of other disasters — from terrorist attacks to meteor strikes — all loom large. We must become a space-faring species to survive. We have the technology not only to get humans to Mars, but to convert Mars into another habitable planet. It will likely take 300 years to "terraform" Mars, as the jargon goes, but we can turn it into a veritable second Garden of Eden. And we can live there, in specially designed habitations, within the next twenty years.In this exciting chronicle, Petranek introduces the circus of lively characters all engaged in a dramatic effort to be the first to settle the Red Planet. How We'll Live on Mars brings firsthand reporting, interviews with key participants, and extensive research to bear on the question of how we can expect to see life on Mars within the next twenty years.

Turing's Cathedral: The Origins of the Digital Universe


George Dyson - 2012
    In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time.  How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.