Reinforcement Learning: An Introduction


Richard S. Sutton - 1998
    Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

Introduction to Quantum Mechanics with Applications to Chemistry


Linus Pauling - 1985
    Numerous tables and figures.

Speed Mathematics: Secret Skills for Quick Calculation


Bill Handley - 2003
     Speed Mathematics teaches simple methods that will enable you to make lightning calculations in your head-including multiplication, division, addition, and subtraction, as well as working with fractions, squaring numbers, and extracting square and cube roots. Here's just one example of this revolutionary approach to basic mathematics: 96 x 97 = Subtract each number from 100. 96 x 97 = 4 3 Subtract diagonally. Either 96--3 or 97-- 4. The result is the first part of the answer. 96 x 97 = 93 4 3 Multiply the numbers in the circles. 4 x 3 = 12. This is the second part of the answer. 96 x 97 = 9312 4 3 It's that easy!

Physics for Scientists and Engineers: A Strategic Approach with Modern Physics [with MasteringPhysics]


Randall D. Knight - 2003
    0321513339 / 9780321513335 Physics for Scientists and Engineers: A Strategic Approach with Modern Physics and MasteringPhysicsâ�¢ Package consists of 0321513576 / 9780321513571 Student Workbook for Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 0321516397 / 9780321516398 MasteringPhysicsâ�¢ with E-book Student Access Kit for Physics for Scientists and Engineers: A Strategic Approach 0805327363 / 9780805327366 Physics for Scientists and Engineers: A Strategic Approach with Modern Physics

Linear Algebra


Kenneth M. Hoffman - 1971
    Linear Equations; Vector Spaces; Linear Transformations; Polynomials; Determinants; Elementary canonical Forms; Rational and Jordan Forms; Inner Product Spaces; Operators on Inner Product Spaces; Bilinear Forms For all readers interested in linear algebra.

50 Mathematical Ideas You Really Need to Know


Tony Crilly - 2007
    Who invented zero? Why are there 60 seconds in a minute? Can a butterfly's wings really cause a storm on the far side of the world? In 50 concise essays, Professor Tony Crilly explains the mathematical concepts that allow use to understand and shape the world around us.

A Tour of the Calculus


David Berlinski - 1995
    Just how calculus makes these things possible and in doing so finds a correspondence between real numbers and the real world is the subject of this dazzling book by a writer of extraordinary clarity and stylistic brio. Even as he initiates us into the mysteries of real numbers, functions, and limits, Berlinski explores the furthest implications of his subject, revealing how the calculus reconciles the precision of numbers with the fluidity of the changing universe. "An odd and tantalizing book by a writer who takes immense pleasure in this great mathematical tool, and tries to create it in others."--New York Times Book Review

An Introduction to Thermal Physics


Daniel V. Schroeder - 1999
    Part I introduces concepts of thermodynamics and statistical mechanics from a unified view. Parts II and III explore further applications of classical thermodynamics and statistical mechanics. Throughout, the emphasis is on real-world applications.

Sir Cumference and the First Round Table: A Math Adventure


Cindy Neuschwander - 1997
    King Arthur was a good ruler, but now he needs a good ruler. What would you do if the neighboring kingdom were threatening war? Naturally, you'd call your strongest and bravest knights together to come up with a solution. But when your conference table causes more problems than the threat of your enemy, you need expert help. Enter Sir Cumference, his wife Lady Di of Ameter, and their son Radius. With the help of the carpenter, Geo of Metry, this sharp-minded team designs the perfect table conducive to discussing the perfect plan for peace. The first in Sir Cumference series, SIR CUMFERENCE AND THE FIRST ROUND TABLE makes math fun and accessible for everyone.

Starting Out with Java: From Control Structures Through Objects


Tony Gaddis - 2009
    If you wouldlike to purchase both the physical text and MyProgrammingLab search for ISBN-10: 0132989999/ISBN-13: 9780132989992. That packageincludes ISBN-10: 0132855836/ISBN-13: 9780132855839 and ISBN-10: 0132891557/ISBN-13: 9780132891554. MyProgrammingLab should only be purchased when required by an instructor. In "Starting Out with Java: From Control Structures through Objects", Gaddis covers procedural programming control structures and methods before introducing object-oriented programming. As with all Gaddis texts, clear and easy-to-read code listings, concise and practical real-world examples, and an abundance of exercises appear in every chapter. "

A Mathematician's Lament: How School Cheats Us Out of Our Most Fascinating and Imaginative Art Form


Paul Lockhart - 2009
    Witty and accessible, Paul Lockhart’s controversial approach will provoke spirited debate among educators and parents alike and it will alter the way we think about math forever.Paul Lockhart, has taught mathematics at Brown University and UC Santa Cruz. Since 2000, he has dedicated himself to K-12 level students at St. Ann’s School in Brooklyn, New York.

The Quantum Universe: Everything That Can Happen Does Happen


Brian Cox - 2011
    Cox and Forshaw's contention? There is no need for quantum mechanics to be viewed this way. There is a lot of mileage in the 'weirdness' of the quantum world, and it often leads to confusion and, frankly, bad science. The Quantum Universe cuts through the Wu Li and asks what observations of the natural world made it necessary, how it was constructed, and why we are confident that, for all its apparent strangeness, it is a good theory.The quantum mechanics of The Quantum Universe provide a concrete model of nature that is comparable in its essence to Newton’s laws of motion, Maxwell’s theory of electricity and magnetism, and Einstein’s theory of relativity.

A First Course in Probability


Sheldon M. Ross - 1976
    A software diskette provides an easy-to-use tool for students to derive probabilities for binomial.

New SYLLABUS Mathematics 3; 6th Edition


Teh Keng Seng
    

In Pursuit of the Unknown: 17 Equations That Changed the World


Ian Stewart - 2012
    We often overlook the historical link between mathematics and technological advances, says Stewart—but this connection is integral to any complete understanding of human history.Equations are modeled on the patterns we find in the world around us, says Stewart, and it is through equations that we are able to make sense of, and in turn influence, our world. Stewart locates the origins of each equation he presents—from Pythagoras's Theorem to Newton's Law of Gravity to Einstein's Theory of Relativity—within a particular historical moment, elucidating the development of mathematical and philosophical thought necessary for each equation's discovery. None of these equations emerged in a vacuum, Stewart shows; each drew, in some way, on past equations and the thinking of the day. In turn, all of these equations paved the way for major developments in mathematics, science, philosophy, and technology. Without logarithms (invented in the early 17th century by John Napier and improved by Henry Briggs), scientists would not have been able to calculate the movement of the planets, and mathematicians would not have been able to develop fractal geometry. The Wave Equation is one of the most important equations in physics, and is crucial for engineers studying the vibrations in vehicles and the response of buildings to earthquakes. And the equation at the heart of Information Theory, devised by Claude Shannon, is the basis of digital communication today.An approachable and informative guide to the equations upon which nearly every aspect of scientific and mathematical understanding depends, In Pursuit of the Unknown is also a reminder that equations have profoundly influenced our thinking and continue to make possible many of the advances that we take for granted.