Introductory Linear Algebra: An Applied First Course


Bernard Kolman - 1988
    Calculus is not a prerequisite, although examples and exercises using very basic calculus are included (labeled Calculus Required.) The most technology-friendly text on the market, Introductory Linear Algebra is also the most flexible. By omitting certain sections, instructors can cover the essentials of linear algebra (including eigenvalues and eigenvectors), to show how the computer is used, and to introduce applications of linear algebra in a one-semester course.

Introduction to Operations Research [with Revised CD-ROM]


Frederick S. Hillier - 1967
    This edition also features the developments in Operations Research, such as metaheuristics, simulation, and spreadsheet modeling.

Div, Grad, Curl, and All That: An Informal Text on Vector Calculus


Harry M. Schey - 1973
    Since the publication of the First Edition over thirty years ago, Div, Grad, Curl, and All That has been widely renowned for its clear and concise coverage of vector calculus, helping science and engineering students gain a thorough understanding of gradient, curl, and Laplacian operators without required knowledge of advanced mathematics.

The Theoretical Minimum: What You Need to Know to Start Doing Physics


Leonard Susskind - 2013
    In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

Single Variable Essential Calculus: Early Transcendentals


James Stewart - 1995
    In writing the book James Stewart asked himself:What is essential for a three-semester calculus course for scientists and engineers? Stewart's SINGLE VARIABLE ESSENTIAL CALCULUS: EARLY TRANSCENDENTALS offers a concise approach to teaching calculus, focusing on major concepts and supporting those with precise definitions, patient explanations, and carefully graded problems. SINGLE VARIABLE ESSENTIAL CALCULUS: EARLY TRANSCENDENTALS is only 850 pages-two-thirds the size of Stewart's other calculus texts (CALCULUS, FIFTH EDITION AND CALCULUS, EARLY TRANSCENDENTALS, Fifth Edition)-yet it contains almost all of the same topics. The author achieved this relative brevity mainly by condensing the exposition and by putting some of the features on the website www.StewartCalculus.com. Despite the reduced size of the book, there is still a modern flavor: Conceptual understanding and technology are not neglected, though they are not as prominent as in Stewart's other books. SINGLE VARIABLE ESSENTIAL CALCULUS: EARLY TRANSCENDENTALS has been written with the same attention to detail, eye for innovation, and meticulous accuracy that have made Stewart's textbooks the best-selling calculus texts in the world.

Introduction to Algebra


Richard Rusczyk - 2007
    Topics covered in the book include linear equations, ratios, quadratic equations, special factorizations, complex numbers, graphing linear and quadratic equations, linear and quadratic inequalities, functions, polynomials, exponents and logarithms, absolute value, sequences and series, and much more!The text is structured to inspire the reader to explore and develop new ideas. Each section starts with problems, giving the student a chance to solve them without help before proceeding. The text then includes solutions to these problems, through which algebraic techniques are taught. Important facts and powerful problem solving approaches are highlighted throughout the text. In addition to the instructional material, the book contains well over 1000 problems.This book can serve as a complete Algebra I course, and also includes many concepts covered in Algebra II. Middle school students preparing for MATHCOUNTS, high school students preparing for the AMC, and other students seeking to master the fundamentals of algebra will find this book an instrumental part of their mathematics libraries.656About the author: Richard Rusczyk is a co-author of Art of Problem Solving, Volumes 1 and 2, the author of Art of Problem Solving's Introduction to Geometry. He was a national MATHCOUNTS participant, a USA Math Olympiad winner, and is currently director of the USA Mathematical Talent Search.

Calculus


Dale E. Varberg - 1999
    Covering various the materials needed by students in engineering, science, and mathematics, this calculus text makes effective use of computing technology, graphics, and applications. It presents at least two technology projects in each chapter.

Principles of Electronic Communication Systems


Louis E. Frenzel - 1997
    Requiring only basic algebra and trigonometry, the new edition is notable for its readability, learning features and numerous full-color photos and illustrations. A systems approach is used to cover state-of-the-art communications technologies, to best reflect current industry practice. This edition contains greatly expanded and updated material on the Internet, cell phones, and wireless technologies. Practical skills like testing and troubleshooting are integrated throughout. A brand-new Laboratory & Activities Manual provides both hands-on experiments and a variety of other activities, reflecting the variety of skills now needed by technicians. A new Online Learning Center web site is available, with a wealth of learning resources for students. An Instructor Productivity Center CD-ROM features solutions to all problems, PowerPoint lessons, and ExamView test banks for each chapter.

Physics for Scientists and Engineers, Volume 2


Raymond A. Serway - 1982
    Raymond Serway, Robert Beichner, and contributing author John W. Jewett present a strong problem-solving approach that is further enhanced through increased realism in worked examples. Problem-solving strategies and hints allow students to develop a systematic approach to completing homework problems. The outstanding ancillary package includes full multimedia support, online homework, and a content-rich Web site that provides extensive support for instructors and students. The CAPA (Computer-assisted Personalized Approach), WebAssign, and University of Texas homework delivery systems give instructors flexibility in assigning online homework.

Remote Sensing and Image Interpretation


Thomas M. Lillesand - 1979
    The text examines the basics of analog image analysis while placing greater emphasis on digitally based systems and analysis techniques. The presentation is discipline neutral, so students in any field of study can gain a clear understanding of these systems and their virtually unlimited applications.

Abstract Algebra


I.N. Herstein - 1986
    Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.

Thomas' Calculus, Early Transcendentals, Media Upgrade


George B. Thomas Jr. - 2002
    This book offers a full range of exercises, a precise and conceptual presentation, and a new media package designed specifically to meet the needs of today's readers. The exercises gradually increase in difficulty, helping readers learn to generalize and apply the concepts. The refined table of contents introduces the exponential, logarithmic, and trigonometric functions in Chapter 7 of the text.KEY TOPICS Functions, Limits and Continuity, Differentiation, Applications of Derivatives, Integration, Applications of Definite Integrals, Integrals and Transcendental Functions, Techniques of Integration, Further Applications of Integration, Conic Sections and Polar Coordinates, Infinite Sequences and Series, Vectors and the Geometry of Space, Vector-Valued Functions and Motion in Space, Partial Derivatives, Multiple Integrals, Integration in Vector Fields.MARKET For all readers interested in Calculus.

Econometrics


Fumio Hayashi - 2000
    It introduces first year Ph.D. students to standard graduate econometrics material from a modern perspective. It covers all the standard material necessary for understanding the principal techniques of econometrics from ordinary least squares through cointegration. The book is also distinctive in developing both time-series and cross-section analysis fully, giving the reader a unified framework for understanding and integrating results.Econometrics has many useful features and covers all the important topics in econometrics in a succinct manner. All the estimation techniques that could possibly be taught in a first-year graduate course, except maximum likelihood, are treated as special cases of GMM (generalized methods of moments). Maximum likelihood estimators for a variety of models (such as probit and tobit) are collected in a separate chapter. This arrangement enables students to learn various estimation techniques in an efficient manner. Eight of the ten chapters include a serious empirical application drawn from labor economics, industrial organization, domestic and international finance, and macroeconomics. These empirical exercises at the end of each chapter provide students a hands-on experience applying the techniques covered in the chapter. The exposition is rigorous yet accessible to students who have a working knowledge of very basic linear algebra and probability theory. All the results are stated as propositions, so that students can see the points of the discussion and also the conditions under which those results hold. Most propositions are proved in the text.For those who intend to write a thesis on applied topics, the empirical applications of the book are a good way to learn how to conduct empirical research. For the theoretically inclined, the no-compromise treatment of the basic techniques is a good preparation for more advanced theory courses.

Numerical Optimization


Jorge Nocedal - 2000
    One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

Think Bayes


Allen B. Downey - 2012