The Art of Invisibility: The World's Most Famous Hacker Teaches You How to Be Safe in the Age of Big Brother and Big Data


Kevin D. Mitnick - 2017
    Consumer's identities are being stolen, and a person's every step is being tracked and stored. What once might have been dismissed as paranoia is now a hard truth, and privacy is a luxury few can afford or understand.In this explosive yet practical book, Kevin Mitnick illustrates what is happening without your knowledge--and he teaches you "the art of invisibility." Mitnick is the world's most famous--and formerly the Most Wanted--computer hacker. He has hacked into some of the country's most powerful and seemingly impenetrable agencies and companies, and at one point he was on a three-year run from the FBI. Now, though, Mitnick is reformed and is widely regarded as the expert on the subject of computer security. He knows exactly how vulnerabilities can be exploited and just what to do to prevent that from happening. In THE ART OF INVISIBILITY Mitnick provides both online and real life tactics and inexpensive methods to protect you and your family, in easy step-by-step instructions. He even talks about more advanced "elite" techniques, which, if used properly, can maximize your privacy. Invisibility isn't just for superheroes--privacy is a power you deserve and need in this modern age.

The Art of Electronics


Paul Horowitz - 1980
    Widely accepted as the authoritative text and reference on electronic circuit design, both analog and digital, this book revolutionized the teaching of electronics by emphasizing the methods actually used by circuit designers -- a combination of some basic laws, rules of thumb, and a large bag of tricks. The result is a largely nonmathematical treatment that encourages circuit intuition, brainstorming, and simplified calculations of circuit values and performance. The new Art of Electronics retains the feeling of informality and easy access that helped make the first edition so successful and popular. It is an ideal first textbook on electronics for scientists and engineers and an indispensable reference for anyone, professional or amateur, who works with electronic circuits.

Numerical Recipes in C: The Art of Scientific Computing


William H. Press - 1988
    In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines bringing the total to well over 300, plus upgraded versions of the original routines, the new edition remains the most practical, comprehensive handbook of scientific computing available today.

Linux Kernel Development


Robert Love - 2003
    The book details the major subsystems and features of the Linux kernel, including its design, implementation, and interfaces. It covers the Linux kernel with both a practical and theoretical eye, which should appeal to readers with a variety of interests and needs. The author, a core kernel developer, shares valuable knowledge and experience on the 2.6 Linux kernel. Specific topics covered include process management, scheduling, time management and timers, the system call interface, memory addressing, memory management, the page cache, the VFS, kernel synchronization, portability concerns, and debugging techniques. This book covers the most interesting features of the Linux 2.6 kernel, including the CFS scheduler, preemptive kernel, block I/O layer, and I/O schedulers. The third edition of Linux Kernel Development includes new and updated material throughout the book:An all-new chapter on kernel data structuresDetails on interrupt handlers and bottom halvesExtended coverage of virtual memory and memory allocationTips on debugging the Linux kernelIn-depth coverage of kernel synchronization and lockingUseful insight into submitting kernel patches and working with the Linux kernel community

Data Science For Dummies


Lillian Pierson - 2014
    Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of their organization’s massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you’ll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization. Provides a background in data science fundamentals before moving on to working with relational databases and unstructured data and preparing your data for analysis Details different data visualization techniques that can be used to showcase and summarize your data Explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques Includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark It’s a big, big data world out there – let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.

Think Like a Programmer: An Introduction to Creative Problem Solving


V. Anton Spraul - 2012
    In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.

Cuda by Example: An Introduction to General-Purpose Gpu Programming


Jason Sanders - 2010
    " From the Foreword by Jack Dongarra, University of Tennessee and Oak Ridge National Laboratory CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required just the ability to program in a modestly extended version of C. " CUDA by Example, " written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered includeParallel programmingThread cooperationConstant memory and eventsTexture memoryGraphics interoperabilityAtomicsStreamsCUDA C on multiple GPUsAdvanced atomicsAdditional CUDA resources All the CUDA software tools you ll need are freely available for download from NVIDIA.http: //developer.nvidia.com/object/cuda-by-e...

Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions


Gregor Hohpe - 2003
    The authors also include examples covering a variety of different integration technologies, such as JMS, MSMQ, TIBCO ActiveEnterprise, Microsoft BizTalk, SOAP, and XSL. A case study describing a bond trading system illustrates the patterns in practice, and the book offers a look at emerging standards, as well as insights into what the future of enterprise integration might hold. This book provides a consistent vocabulary and visual notation framework to describe large-scale integration solutions across many technologies. It also explores in detail the advantages and limitations of asynchronous messaging architectures. The authors present practical advice on designing code that connects an application to a messaging system, and provide extensive information to help you determine when to send a message, how to route it to the proper destination, and how to monitor the health of a messaging system. If you want to know how to manage, monitor, and maintain a messaging system once it is in use, get this book.

Algorithms Illuminated (Part 1): The Basics


Tim Roughgarden - 2017
    Their applications range from network routing and computational genomics to public-key cryptography and database system implementation. Studying algorithms can make you a better programmer, a clearer thinker, and a master of technical interviews. Algorithms Illuminated is an accessible introduction to the subject---a transcript of what an expert algorithms tutor would say over a series of one-on-one lessons. The exposition is rigorous but emphasizes the big picture and conceptual understanding over low-level implementation and mathematical details. Part 1 of the book series covers asymptotic analysis and big-O notation, divide-and-conquer algorithms and the master method, randomized algorithms, and several famous algorithms for sorting and selection.

Feature Engineering for Machine Learning


Alice Zheng - 2018
    With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.

Artificial Intelligence for Games (The Morgan Kaufmann Series in Interactive 3D Technology)


Ian Millington - 2006
    The commercial success of a game is often dependent upon the quality of the AI, yet the engineering of AI is often begun late in the development process and is frequently misunderstood. In this book, Ian Millington brings extensive professional experience to the problem of improving the quality of AI in games. A game developer since 1987, he was founder of Mindlathe Ltd., at the time the largest specialist AI company in gaming. Ian shows how to think about AI as an integral part of game play. He describes numerous examples from real games and explores the underlying ideas through detailed case studies. He goes further to introduce many techniques little used by developers today. The book's CD-ROM contains a library of C++ source code and demonstration programs, and provides access to a website with a complete commercial source code library of AI algorithms and techniques. * A comprehensive, professional tutorial and reference to implement true AI in games.* Walks through the entire development process from beginning to end.* Includes over 100 pseudo code examples of techniques used in commercial games, case studies for all major genres, a CD-ROM and companion website with extensive C++ source code implementations for Windows, and source code libraries for Linux and OS X available through the website.

The Cartoon Guide to Statistics


Larry Gonick - 1993
    Never again will you order the Poisson Distribution in a French restaurant!This updated version features all new material.

Machine Learning for Dummies


John Paul Mueller - 2016
    Without machine learning, fraud detection, web search results, real-time ads on web pages, credit scoring, automation, and email spam filtering wouldn't be possible, and this is only showcasing just a few of its capabilities. Written by two data science experts, Machine Learning For Dummies offers a much-needed entry point for anyone looking to use machine learning to accomplish practical tasks.Covering the entry-level topics needed to get you familiar with the basic concepts of machine learning, this guide quickly helps you make sense of the programming languages and tools you need to turn machine learning-based tasks into a reality. Whether you're maddened by the math behind machine learning, apprehensive about AI, perplexed by preprocessing data--or anything in between--this guide makes it easier to understand and implement machine learning seamlessly.Grasp how day-to-day activities are powered by machine learning Learn to 'speak' certain languages, such as Python and R, to teach machines to perform pattern-oriented tasks and data analysis Learn to code in R using R Studio Find out how to code in Python using Anaconda Dive into this complete beginner's guide so you are armed with all you need to know about machine learning!

Python Cookbook


David Beazley - 2002
    Packed with practical recipes written and tested with Python 3.3, this unique cookbook is for experienced Python programmers who want to focus on modern tools and idioms.Inside, you’ll find complete recipes for more than a dozen topics, covering the core Python language as well as tasks common to a wide variety of application domains. Each recipe contains code samples you can use in your projects right away, along with a discussion about how and why the solution works.Topics include:Data Structures and AlgorithmsStrings and TextNumbers, Dates, and TimesIterators and GeneratorsFiles and I/OData Encoding and ProcessingFunctionsClasses and ObjectsMetaprogrammingModules and PackagesNetwork and Web ProgrammingConcurrencyUtility Scripting and System AdministrationTesting, Debugging, and ExceptionsC Extensions

The Design of Everyday Things


Donald A. Norman - 1988
    It could forever change how you experience and interact with your physical surroundings, open your eyes to the perversity of bad design and the desirability of good design, and raise your expectations about how things should be designed.B & W photographs and illustrations throughout.