Supersymmetry: Unveiling The Ultimate Laws Of Nature


Gordon L. Kane - 2000
    In this groundbreaking work, renowned physicist Gordon Kane first gives us the basics of the Standard Model, which describes the fundamental constituents and forces of nature. He then explains the next great leap in understanding: the theory of supersymmetry, which implies that each of the fundamental particles has a "superpartner" that can be detected at energies and intensities only now being achieved in the giant accelerators. If Kane and his colleagues are correct, these superpartners will also help solve many of the puzzles of modern physics-such as the existence of the Higgs boson-as well as one of the biggest mysteries is cosmology: the notorious "dark matter" of the universe.

A Question of Time: The Ultimate Paradox


Scientific American - 2012
    

The Black Hole War: My Battle with Stephen Hawking to Make the World Safe for Quantum Mechanics


Leonard Susskind - 2008
    Most scientists didn't recognize the import of Hawking's claims, but Leonard Susskind and Gerard t'Hooft realized the threat, and responded with a counterattack that changed the course of physics.The Black Hole War is the thrilling story of their united effort to reconcile Hawking's revolutionary theories of black holes with their own sense of reality -- effort that would eventually result in Hawking admitting he was wrong, paying up, and Susskind and t'Hooft realizing that our world is a hologram projected from the outer boundaries of space.A brilliant book about modern physics, quantum mechanics, the fate of stars and the deep mysteries of black holes, Leonard Susskind's account of the Black Hole War is mind-bending and exhilarating reading.

The Quantum Brain: The Search for Freedom and the Next Generation of Man


Jeffrey Satinover - 2001
    To answer them, psychiatrist, researcher, and critically acclaimed author Jeffrey Satinover first explores the latest discoveries in neuroscience, modern physics, and radically new kinds of computing, then shows how, together, they suggest the brain embodies and amplifies the mysterious laws of quantum physics. By its doing so, Satinover argues we are elevated above the mere learning machines modern science assumes us to be. Satinover also makes two provocative predictions: We will soon construct artificial devices as free and aware as we are; as well as begin a startling re-evaluation of just who and what we are, of our place in the universe, and perhaps even of God.

My Life: Albert Einstein


General Press - 2018
    This is the story of Albert Einstein who born in Germany in 1879. Despite facing countless difficulties in his life, he earned his name in the field of science and proved that what extent a person can go to chose his way. No one born as a genius—man's hard work and passion makes him a genius. CONTENTS: 1. Early Life 2. School Years 3. University Years 4. Post-University Years 5. Scientific Discoveries 6. Personal Life 7. Interesting Facts about Einstein 8. Famous Words by Albert Einstein 9. An Overview of Einstein’s Life

Dark Cosmos: In Search of Our Universe's Missing Mass and Energy


Dan Hooper - 2006
    Beginning with the publication of Albert Einstein's theory of relativity, through the wild revolution of quantum mechanics, and up until the physics of the modern day (including the astonishing revelation, in 1998, that the Universe is not only expanding, but doing so at an ever-quickening pace), much of what physicists have seen in our Universe suggests that much of our Universe is unseen—that we live in a dark cosmos.Everyone knows that there are things no one can see—the air you're breathing, for example, or, to be more exotic, a black hole. But what everyone does not know is that what we can see—a book, a cat, or our planet—makes up only 5 percent of the Universe. The rest—fully 95 percent—is totally invisible to us; its presence discernible only by the weak effects it has on visible matter around it.This invisible stuff comes in two varieties—dark matter and dark energy. One holds the Universe together, while the other tears it apart. What these forces really are has been a mystery for as long as anyone has suspected they were there, but the latest discoveries of experimental physics have brought us closer to that knowledge. Particle physicist Dan Hooper takes his readers, with wit, grace, and a keen knack for explaining the toughest ideas science has to offer, on a quest few would have ever expected: to discover what makes up our dark cosmos.

Extraterrestrial: The First Sign of Intelligent Life Beyond Earth


Avi Loeb - 2021
    In late 2017, scientists at a Hawaiian observatory glimpsed an object soaring through our inner solar system, moving so quickly that it could only have come from another star. Avi Loeb, Harvard’s top astronomer, showed it was not an asteroid; it was moving too fast along a strange orbit, and left no trail of gas or debris in its wake. There was only one conceivable explanation: the object was a piece of advanced technology created by a distant alien civilization.   In Extraterrestrial, Loeb takes readers inside the thrilling story of the first interstellar visitor to be spotted in our solar system. He outlines his controversial theory and its profound implications: for science, for religion, and for the future of our species and our planet. A mind-bending journey through the furthest reaches of science, space-time, and the human imagination, Extraterrestrial challenges readers to aim for the stars—and to think critically about what’s out there, no matter how strange it seems.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

Computational Fluid Dynamics


John D. Anderson Jr. - 1995
    It can also serve as a one-semester introductory course at the beginning graduate level, as a useful precursor to a more serious study of CFD in advanced books. It is presented in a very readable, informal, enjoyable style.

Wrinkles in Time


George Smoot - 1993
    Dr. George Smoot, a distinguished cosmologist and adventurer whose quest for cosmic knowledge had taken him from the Brazilian rain forest to the South Pole, unveiled his momentous discovery, bringing to light the very nature of the universe. For anyone who has ever looked up at the night sky and wondered, for anyone who has ever longed to pull aside the fabric of the universe for a glimpse of what lies behind it. Wrinkles in Time is the story of Smoot's search to uncover the cosmic seeds of the universe.Wrinkles in Time is the Double Helix of cosmology, an intimate look at the inner world of men and women who ask. "Why are we here?" It tells the story of George Smoot's dogged pursuit of the cosmic wrinkles in the frozen wastes of Antarctica, on mountaintops, in experiments borne aloft aboard high-altitude balloons, U-2 spy planes, and finally a space satellite. Wrinkles in Time presents the hard science behind the structured violence of the big bang theory through breathtakingly clear, lucid images and meaningful comparisons. Scientists and nonscientists alike can follow with rapt attention the story of how, in a fiery creation, wrinkles formed in space ultimately to become stars, galaxies, and even greater delicate structures. Anyone can appreciate the implications of a universe whose end is written in its beginnings - whose course developed according to a kind of cosmic DNA, which guided the universe from simplicity and symmetry to ever-greater complexity and structure. As controversial as it may seem today, Wrinkles in Time reveals truths that, in an earlier century, would have doomed its proclaimers to the fiery stake. For four thousand years some people have accepted the Genesis account of cosmic origin; for most of this century, scientists debated two rival scientific explanations known as the steady state and big bang theories. And now, Wrinkles in Time tells what really happened. The personal story behind astrophysicist George Smoot's incredible discovery of the origin of the cosmos, hailed by Stephen Hawking as "The scientific discovery of the century, if not of all time."

Engineering Mechanics Dynamics


Russell C. Hibbeler - 1992
    Topics covered include kinematics and kinetics of particles, planar kinematics of a rigid body, three-dimensional kinematics of a rigid body, and vibrations. Includes computer problems, design projects, and countless

Strength of Materials, Part 1 and Part 2


Stephen P. Timoshenko - 1983
    1: Elementary Theory and Problems contains the essential material that is usually covered in required courses of strength of materials in our engineering schools. Strength of Materials - Part. 2: Advanced Theory and Problems contains the later developments that are of practical importance in the fields of strength of materials, and theory of elasticity. Complete derivations of problems of practical interest are given in most cases. The books are illustrated with a number of problems to which solutions are presented. In many cases, the problems are chosen so as to widen the field covered by the text and to illustrate the application of the theory in the solution of design problems.

The Life of the Cosmos


Lee Smolin - 1997
    In The Life of the Cosmos, Smolin cuts the Gordian knot of cosmology with a simple, powerful idea: "The underlying structure of our world, " he writes, "is to be found in the logic of evolution." Today's physicists have overturned Newton's view of the universe, yet they continue to cling to an understanding of reality not unlike Newton's own - as a clock, an intricate mechanism, governed by laws which are mathematical and eternally true. Smolin argues that the laws of nature we observe may be in part the result of a process of natural selection which took place before the big bang. Smolin's ideas are based on recent developments in cosmology, quantum theory, relativity and string theory, yet they offer, at the same time, an unprecedented view of how these developments may fit together to form a new theory of cosmology. From this perspective, the lines between the simple and the complex, the fundamental and the emergent, and even between the biological and the physical are redrawn. The result is a framework that illuminates many intractable problems, from the paradoxes of quantum theory and the nature of space and time to the problem of constructing a final theory of physics. As he argues for this new view, Smolin introduces the reader to recent developments in a wide range of fields, from string theory and quantum gravity to evolutionary theory the structure of galaxies. He examines the philosophical roots of controversies in the foundations of physics, and shows how they may be transformed as science moves towardunderstanding the universe as an interrelated, self-constructed entity, within which life and complexity have a natural place, and in which "the occurrence of novelty, indeed the perpetual birth of novelty, can be understood."

The Lightness of Being: Mass, Ether, and the Unification of Forces


Frank Wilczek - 2008
    Frank Wilczek has played a lead role in establishing the new paradigms. Transcending the clash and mismatch of older ideas about what matter is, and what space is, Wilczek presents here some brilliant and clear syntheses. Space is a dynamic material, the engine of reality; matter is a subtle pattern of disturbance in that material.Extraordinarily readable and authoritative, The Lightness of Being is the first book to unwrap these exciting new ideas for the general public. It explores their implications for basic questions about space, mass, energy, and the longed-for possibility of a fully unified theory of Nature. Along the way, Wilczek presents new perspectives on many strange aspects of our fantastic universe. Pointing toward new directions where the great discoveries in fundamental physics are likely to come, he envisions a new Golden Age in physics.

One, Two, Three...Infinity: Facts and Speculations of Science


George Gamow - 1947
    . . full of intellectual treats and tricks, of whimsy and deep scientific philosophy. It is highbrow entertainment at its best, a teasing challenge to all who aspire to think about the universe." — New York Herald TribuneOne of the world's foremost nuclear physicists (celebrated for his theory of radioactive decay, among other accomplishments), George Gamow possessed the unique ability of making the world of science accessible to the general reader.He brings that ability to bear in this delightful expedition through the problems, pleasures, and puzzles of modern science. Among the topics scrutinized with the author's celebrated good humor and pedagogical prowess are the macrocosm and the microcosm, theory of numbers, relativity of space and time, entropy, genes, atomic structure, nuclear fission, and the origin of the solar system.In the pages of this book readers grapple with such crucial matters as whether it is possible to bend space, why a rocket shrinks, the "end of the world problem," excursions into the fourth dimension, and a host of other tantalizing topics for the scientifically curious. Brimming with amusing anecdotes and provocative problems, One Two Three . . . Infinity also includes over 120 delightful pen-and-ink illustrations by the author, adding another dimension of good-natured charm to these wide-ranging explorations.Whatever your level of scientific expertise, chances are you'll derive a great deal of pleasure, stimulation, and information from this unusual and imaginative book. It belongs in the library of anyone curious about the wonders of the scientific universe. "In One Two Three . . . Infinity, as in his other books, George Gamow succeeds where others fail because of his remarkable ability to combine technical accuracy, choice of material, dignity of expression, and readability." — Saturday Review of Literature