Book picks similar to
An Introduction to Tensors and Group Theory for Physicists by Nadir Jeevanjee
physics
math-physics
math
mathematical-physics
How Numbers Work: Discover the Strange and Beautiful World of Mathematics (New Scientist Instant Expert)
New Scientist - 2018
No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends.The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the "imaginary" number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it?How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.
A First Course in General Relativity
Bernard F. Schutz - 1985
This textbook, based on the author's own undergraduate teaching, develops general relativity and its associated mathematics from a minimum of prerequisites, leading to a physical understanding of the theory in some depth. It reinforces this understanding by making a detailed study of the theory's most important applications - neutron stars, black holes, gravitational waves, and cosmology - using the most up-to-date astronomical developments. The book is suitable for a one-year course for beginning graduate students or for undergraduates in physics who have studied special relativity, vector calculus, and electrostatics. Graduate students should be able to use the book selectively for half-year courses.
Concepts in Thermal Physics
Stephen J. Blundell - 2006
This book provides a modern introduction to the main principles that are foundational to thermal physics, thermodynamics and statistical mechanics. The key concepts are carefully presented in a clear way, and new ideas are illustrated with copious worked examples as well as a description of the historical background to their discovery. Applications are presented to subjects as diverse as stellar astrophysics, information and communication theory, condensed matter physics and climate change. Each chapter concludes with detailed exercises.
Zeno's Paradox: Unraveling the Ancient Mystery Behind the Science of Space and Time
Joseph Mazur - 2008
Today, these paradoxes remain on the cutting edge of our investigations into the fabric of space and time. Zeno's Paradox uses the motion paradox as a jumping-off point for an exploration of the twenty-five-hundred-year quest to uncover the true nature of the universe. From Galileo to Einstein to Stephen Hawking, some of the greatest minds in history have tackled the problem and made spectacular breakthroughs, but through it all, the paradox of motion remains.
The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics
Robert Oerter - 2005
The first, which describes the force of gravity, is widely known: Einstein's General Theory of Relativity. But the theory that explains everything else--the Standard Model of Elementary Particles--is virtually unknown among the general public.In The Theory of Almost Everything, Robert Oerter shows how what were once thought to be separate forces of nature were combined into a single theory by some of the most brilliant minds of the twentieth century. Rich with accessible analogies and lucid prose, The Theory of Almost Everything celebrates a heretofore unsung achievement in human knowledge--and reveals the sublime structure that underlies the world as we know it.
Introduction to Special Relativity
Robert Resnick - 1968
Professor Resnick presents a fundamental and unified development of the subject with unusually clear discussions of the aspects that usually trouble beginners. He includes, for example, a section on the common sense of relativity. His presentation is lively and interspersed with historical, philosophical and special topics (such as the twin paradox) that will arouse and hold the reader's interest. You'll find many unique features that help you grasp the material, such as worked-out examples, summary tables, thought questions and a wealth of excellent problems. The emphasis throughout the book is physical. The experimental background, experimental confirmation of predictions, and the physical interpretation of principles are stressed. The book treats relativistic kinematics, relativistic dynamics, and relativity and electromagnetism and contains special appendices on the geometric representation of space-time and on general relativity. Its organization permits an instructor to vary the length and depth of his treatment and to use the book either with or following classical physics. These features make it an ideal companion for introductory course
The Quantum Theory of Fields: Volume I, Foundations
Steven Weinberg - 1995
This is a two-volume work. Volume I introduces the foundations of quantum field theory. The development is fresh and logical throughout, with each step carefully motivated by what has gone before, and emphasizing the reasons why such a theory should describe nature. After a brief historical outline, the book begins anew with the principles about which we are most certain, relativity and quantum mechanics, and the properties of particles that follow from these principles. Quantum field theory emerges from this as a natural consequence. The author presents the classic calculations of quantum electrodynamics in a thoroughly modern way, showing the use of path integrals and dimensional regularization. His account of renormalization theory reflects the changes in our view of quantum field theory since the advent of effective field theories. The book's scope extends beyond quantum electrodynamics to elementary particle physics, and nuclear physics. It contains much original material, and is peppered with examples and insights drawn from the author's experience as a leader of elementary particle research. Problems are included at the end of each chapter. This work will be an invaluable reference for all physicists and mathematicians who use quantum field theory, and it is also appropriate as a textbook for graduate students in this area.
An Introduction To Quantum Field Theory
Michael E. Peskin - 1994
The authors make these subjects accessible through carefully worked examples illustrating the technical aspects of the subject, and intuitive explanations of what is going on behind the mathematics. After presenting the basics of quantum electrodynamics, the authors discuss the theory of renormalization and its relation to statistical mechanics, and introduce the renormalization group. This discussion sets the stage for a discussion of the physical principles that underlie the fundamental interactions of elementary particle physics and their description by gauge field theories.
Introduction to Linear Algebra
Gilbert Strang - 1993
Topics covered include matrix multiplication, row reduction, matrix inverse, orthogonality and computation. The self-teaching book is loaded with examples and graphics and provides a wide array of probing problems, accompanying solutions, and a glossary. Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.
The Magic of Math: Solving for X and Figuring Out Why
Arthur T. Benjamin - 2015
joyfully shows you how to make nature's numbers dance."--Bill Nye (the science guy)The Magic of Math is the math book you wish you had in school. Using a delightful assortment of examples-from ice-cream scoops and poker hands to measuring mountains and making magic squares-this book revels in key mathematical fields including arithmetic, algebra, geometry, and calculus, plus Fibonacci numbers, infinity, and, of course, mathematical magic tricks. Known throughout the world as the "mathemagician," Arthur Benjamin mixes mathematics and magic to make the subject fun, attractive, and easy to understand for math fan and math-phobic alike."A positively joyful exploration of mathematics."-Publishers Weekly, starred review"Each [trick] is more dazzling than the last."-Physics World
Three Roads To Quantum Gravity
Lee Smolin - 2000
"Provocative, original, and unsettling." -- The New York Review of Books "An excellent writer, a creative thinker." -- Nature
3,000 Solved Problems in Physics
Alvin Halpern - 1988
Contains 3000 solved problems with solutions, solved problems; an index to help you quickly locate the types of problems you want to solve; problems like those you'll find on your exams; techniques for choosing the correct approach to problems; and guidance toward efficient solutions.
The Joy of x: A Guided Tour of Math, from One to Infinity
Steven H. Strogatz - 2012
do it? How should you flip your mattress to get the maximum wear out of it? How does Google search the Internet? How many people should you date before settling down? Believe it or not, math plays a crucial role in answering all of these questions and more.Math underpins everything in the cosmos, including us, yet too few of us understand this universal language well enough to revel in its wisdom, its beauty — and its joy. This deeply enlightening, vastly entertaining volume translates math in a way that is at once intelligible and thrilling. Each trenchant chapter of The Joy of x offers an “aha!” moment, starting with why numbers are so helpful, and progressing through the wondrous truths implicit in π, the Pythagorean theorem, irrational numbers, fat tails, even the rigors and surprising charms of calculus. Showing why he has won awards as a professor at Cornell and garnered extensive praise for his articles about math for the New York Times, Strogatz presumes of his readers only curiosity and common sense. And he rewards them with clear, ingenious, and often funny explanations of the most vital and exciting principles of his discipline.Whether you aced integral calculus or aren’t sure what an integer is, you’ll find profound wisdom and persistent delight in The Joy of x.