Book picks similar to
Functions and Graphs by Israel M. Gelfand
mathematics
math
maths
education
Engineering Mathematics
K.A. Stroud - 2001
Fully revised to meet the needs of the wide range of students beginning engineering courses, this edition has an extended Foundation section including new chapters on graphs, trigonometry, binomial series and functions and a CD-ROM
Introduction to Algebra
Richard Rusczyk - 2007
Topics covered in the book include linear equations, ratios, quadratic equations, special factorizations, complex numbers, graphing linear and quadratic equations, linear and quadratic inequalities, functions, polynomials, exponents and logarithms, absolute value, sequences and series, and much more!The text is structured to inspire the reader to explore and develop new ideas. Each section starts with problems, giving the student a chance to solve them without help before proceeding. The text then includes solutions to these problems, through which algebraic techniques are taught. Important facts and powerful problem solving approaches are highlighted throughout the text. In addition to the instructional material, the book contains well over 1000 problems.This book can serve as a complete Algebra I course, and also includes many concepts covered in Algebra II. Middle school students preparing for MATHCOUNTS, high school students preparing for the AMC, and other students seeking to master the fundamentals of algebra will find this book an instrumental part of their mathematics libraries.656About the author: Richard Rusczyk is a co-author of Art of Problem Solving, Volumes 1 and 2, the author of Art of Problem Solving's Introduction to Geometry. He was a national MATHCOUNTS participant, a USA Math Olympiad winner, and is currently director of the USA Mathematical Talent Search.
In Search of Schrödinger's Cat: Quantum Physics and Reality
John Gribbin - 1984
It is so important that it provides the fundamental underpinning of all modern sciences. Without it, we'd have no nuclear power or nuclear bombs, no lasers, no TV, no computers, no science of molecular biology, no understanding of DNA, no genetic engineering—at all. John Gribbin tells the complete story of quantum mechanics, a truth far stranger than any fiction. He takes us step-by-step into an ever more bizarre and fascinating place—requiring only that we approach it with an open mind. He introduces the scientists who developed quantum theory. He investigates the atom, radiation, time travel, the birth of the universe, superconductors and life itself. And in a world full of its own delights, mysteries and surprises, he searches for Schrödinger's Cat—a search for quantum reality—as he brings every reader to a clear understanding of the most important area of scientific study today—quantum physics.
The Calculus Direct
John Weiss - 2009
The calculus is not a hard subject and I prove this through an easy to read and obvious approach spanning only 100 pages. I have written this book with the following type of student in mind; the non-traditional student returning to college after a long break, a notoriously weak student in math who just needs to get past calculus to obtain a degree, and the garage tinkerer who wishes to understand a little more about the technical subjects. This book is meant to address the many fundamental thought-blocks that keep the average 'mathaphobe' (or just an interested person who doesn't have the time to enroll in a course) from excelling in mathematics in a clear and concise manner. It is my sincerest hope that this book helps you with your needs.Show more Show less
Schaum's Mathematical Handbook of Formulas and Tables
Murray R. Spiegel - 1968
The topics range from elementary to advanced - from algebra, trigonometry and calculus to vector analysis, Bessel functions, Legendre polynomials, and elliptic integrals.
Linear Algebra
Stephen H. Friedberg - 1979
This top-selling, theorem-proof text presents a careful treatment of the principal topics of linear algebra, and illustrates the power of the subject through a variety of applications. It emphasizes the symbiotic relationship between linear transformations and matrices, but states theorems in the more general infinite-dimensional case where appropriate.
Calculus, Volume 1: One-Variable Calculus with an Introduction to Linear Algebra
Tom M. Apostol - 1961
Integration is treated before differentiation--this is a departure from most modern texts, but it is historically correct, and it is the best way to establish the true connection between the integral and the derivative. Proofs of all the important theorems are given, generally preceded by geometric or intuitive discussion. This Second Edition introduces the mean-value theorems and their applications earlier in the text, incorporates a treatment of linear algebra, and contains many new and easier exercises. As in the first edition, an interesting historical introduction precedes each important new concept.
Introductory Linear Algebra: An Applied First Course
Bernard Kolman - 1988
Calculus is not a prerequisite, although examples and exercises using very basic calculus are included (labeled Calculus Required.) The most technology-friendly text on the market, Introductory Linear Algebra is also the most flexible. By omitting certain sections, instructors can cover the essentials of linear algebra (including eigenvalues and eigenvectors), to show how the computer is used, and to introduce applications of linear algebra in a one-semester course.
Numerical Optimization
Jorge Nocedal - 2000
One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
No bullshit guide to math and physics
Ivan Savov - 2010
It shouldn't be like that. Learning calculus without mechanics is incredibly boring. Learning mechanics without calculus is missing the point. This textbook integrates both subjects and highlights the profound connections between them.This is the deal. Give me 350 pages of your attention, and I'll teach you everything you need to know about functions, limits, derivatives, integrals, vectors, forces, and accelerations. This book is the only math book you'll need for the first semester of undergraduate studies in science.With concise, jargon-free lessons on topics in math and physics, each section covers one concept at the level required for a first-year university course. Anyone can pick up this book and become proficient in calculus and mechanics, regardless of their mathematical background.Visit http://minireference.com for more details.
A Student's Guide to Maxwell's Equations
Daniel Fleisch - 2007
In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.
Elements of Partial Differential Equations
Ian N. Sneddon - 2006
It emphasizes forms suitable for students and researchers whose interest lies in solving equations rather than in general theory. Solutions to odd-numbered problems appear at the end. 1957 edition.
Discrete Mathematics
Richard Johnsonbaugh - 1984
Focused on helping students understand and construct proofs and expanding their mathematical maturity, this best-selling text is an accessible introduction to discrete mathematics. Johnsonbaugh's algorithmic approach emphasizes problem-solving techniques. The Seventh Edition reflects user and reviewer feedback on both content and organization.
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving
Sanjoy Mahajan - 2010
Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Godel: A Life Of Logic, The Mind, And Mathematics
John L. Casti - 2000
His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.