Einstein's Clocks, Poincaré's Maps: Empires of Time
Peter Galison - 2003
And two giants at the foundations of modern science were converging, step-by-step, on the answer: Albert Einstein, an young, obscure German physicist experimenting with measuring time using telegraph networks and with the coordination of clocks at train stations; and the renowned mathematician Henri Poincaré, president of the French Bureau of Longitude, mapping time coordinates across continents. Each found that to understand the newly global world, he had to determine whether there existed a pure time in which simultaneity was absolute or whether time was relative.Esteemed historian of science Peter Galison has culled new information from rarely seen photographs, forgotten patents, and unexplored archives to tell the fascinating story of two scientists whose concrete, professional preoccupations engaged them in a silent race toward a theory that would conquer the empire of time.
Biology
Neil A. Campbell - 1987
This text has invited more than 4 million students into the study of this dynamic and essential discipline.The authors have restructured each chapter around a conceptual framework of five or six big ideas. An Overview draws students in and sets the stage for the rest of the chapter, each numbered Concept Head announces the beginning of a new concept, and Concept Check questions at the end of each chapter encourage students to assess their mastery of a given concept. New Inquiry Figures focus students on the experimental process, and new Research Method Figures illustrate important techniques in biology. Each chapter ends with a Scientific Inquiry Question that asks students to apply scientific investigation skills to the content of the chapter.
The Constants of Nature: The Numbers That Encode the Deepest Secrets of the Universe
John D. Barrow - 2002
In The Constants of Nature, Cambridge Professor and bestselling author John D.Barrow takes us on an exploration of these governing principles. Drawing on physicists such as Einstein and Planck, Barrow illustrates with stunning clarity our dependence on the steadfastness of these principles. But he also suggests that the basic forces may have been radically different during the universe’s infancy, and suggests that they may continue a deeply hidden evolution. Perhaps most tantalizingly, Barrow theorizes about the realities that might one day be found in a universe with different parameters than our own.
What Is Real?: The Unfinished Quest for the Meaning of Quantum Physics
Adam Becker - 2018
But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's Copenhagen interpretation and dismissed questions about the reality underlying quantum physics as meaningless. A mishmash of solipsism and poor reasoning, Copenhagen endured, as Bohr's students vigorously protected his legacy, and the physics community favored practical experiments over philosophical arguments. As a result, questioning the status quo long meant professional ruin. And yet, from the 1920s to today, physicists like John Bell, David Bohm, and Hugh Everett persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and of the courageous scientists who dared to stand up for truth.
The End of Everything (Astrophysically Speaking)
Katie Mack - 2020
With the Big Bang, it went from a state of unimaginable density to an all-encompassing cosmic fireball to a simmering fluid of matter and energy, laying down the seeds for everything from dark matter to black holes to one rocky planet orbiting a star near the edge of a spiral galaxy that happened to develop life. But what happens at the end of the story? In billions of years, humanity could still exist in some unrecognizable form, venturing out to distant space, finding new homes and building new civilizations. But the death of the universe is final. What might such a cataclysm look like? And what does it mean for us? Dr. Katie Mack has been contemplating these questions since she was eighteen, when her astronomy professor first informed her the universe could end at any moment, setting her on the path toward theoretical astrophysics. Now, with lively wit and humor, she unpacks them in The End of Everything, taking us on a mind-bending tour through each of the cosmos’ possible finales: the Big Crunch; the Heat Death; Vacuum Decay; the Big Rip; and the Bounce. In the tradition of Neil DeGrasse’s bestseller Astrophysics for People in a Hurry, Mack guides us through major concepts in quantum mechanics, cosmology, string theory, and much more, in a wildly fun, surprisingly upbeat ride to the farthest reaches of everything we know.
Time Travel in Einstein's Universe: The Physical Possibilities of Travel Through Time
J. Richard Gott III - 2001
Richard Gott leads time travel out of the world of H. G. Wells and into the realm of scientific possibility. Building on theories posited by Einstein and advanced by scientists such as Stephen Hawking and Kip Thorne, Gott explains how time travel can actually occur. He describes, with boundless enthusiasm and humor, how travel to the future is not only possible but has already happened, and he contemplates whether travel to the past is also conceivable. Notable not only for its extraordinary subject matter and scientific brilliance, Time Travel in Einstein’s Universe is a delightful and captivating exploration of the surprising facts behind the science fiction of time travel.
The Way Things Work
David Macaulay - 1988
Full-color illustrations.
Gödel's Proof
Ernest Nagel - 1958
Gödel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences--perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times."However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.New York University Press is proud to publish this special edition of one of its bestselling books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.
The Chemistry Book: From Gunpowder to Graphene, 250 Milestones in the History of Chemistry
Derek B. Lowe - 2016
As the "central science" that bridges biology and physics, chemistry plays an important role in countless medical and technological advances. Covering entertaining stories and unexpected applications, chemist and journalist Derek B. Lowe traces the most important—and surprising—chemical discoveries.
Innumeracy: Mathematical Illiteracy and Its Consequences
John Allen Paulos - 1988
Dozens of examples in innumeracy show us how it affects not only personal economics and travel plans, but explains mis-chosen mates, inappropriate drug-testing, and the allure of pseudo-science.
How to Solve It: A New Aspect of Mathematical Method
George Pólya - 1944
Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.
The Extended Phenotype: The Long Reach of the Gene
Richard Dawkins - 1982
He proposes that we look at evolution as a battle between genes instead of between whole organisms. We can then view changes in phenotypes—the end products of genes, like eye color or leaf shape, which are usually considered to increase the fitness of an individual—as serving the evolutionary interests of genes.Dawkins makes a convincing case that considering one’s body, personality, and environment as a field of combat in a kind of “arms race” between genes fighting to express themselves on a strand of DNA can clarify and extend the idea of survival of the fittest. This influential and controversial book illuminates the complex world of genetics in an engaging, lively manner.
The Mathematical Experience
Philip J. Davis - 1980
This is the classic introduction for the educated lay reader to the richly diverse world of mathematics: its history, philosophy, principles, and personalities.
13 Things That Don't Make Sense: The Most Baffling Scientific Mysteries of Our Time
Michael Brooks - 2008
The effects of homeopathy don’t go away under rigorous scientific conditions. The laws of nature aren’t what they used to be. Thirty years on, no one has an explanation for a seemingly intelligent signal received from outer space. The US Department of Energy is re-examining cold fusion because the experimental evidence seems too solid to ignore. The placebo effect is put to work in medicine while doctors can’t agree whether it even exists.In an age when science is supposed to be king, scientists are beset by experimental results they simply can’t explain. But, if the past is anything to go by, these anomalies contain the seeds of future revolutions. While taking readers on an entertaining tour d’horizon of the strangest of scientific findings – involving everything from our lack of free will to Martian methane that offers new evidence of life on the planet – Michael Brooks argues that the things we don’t understand are the key to what we are about to discover.This mind-boggling but entirely accessible survey of the outer limits of human knowledge is based on a short article by Michael Brooks for New Scientist magazine. It became the sixth most circulated story on the internet in 2005, and provoked widespread comment and compliments (Google “13 things that do not make sense” to see).Michael Brooks has now dug deeply into those mysteries, with extraordinary results.
Lost in Math: How Beauty Leads Physics Astray
Sabine Hossenfelder - 2018
Whether pondering black holes or predicting discoveries at CERN, physicists believe the best theories are beautiful, natural, and elegant, and this standard separates popular theories from disposable ones. This is why, Sabine Hossenfelder argues, we have not seen a major breakthrough in the foundations of physics for more than four decades. The belief in beauty has become so dogmatic that it now conflicts with scientific objectivity: observation has been unable to confirm mindboggling theories, like supersymmetry or grand unification, invented by physicists based on aesthetic criteria. Worse, these "too good to not be true" theories are actually untestable and they have left the field in a cul-de-sac. To escape, physicists must rethink their methods. Only by embracing reality as it is can science discover the truth.