Chance: A Guide to Gambling, Love, the Stock Market, and Just About Everything Else


Amir D. Aczel - 2003
    Aczel turns his sights on probability theory -- the branch of mathematics that measures the likelihood of a random event. He explains probability in clear, layman's terms, and shows its practical applications. What is commonly called luck has mathematical roots and in Chance, you'll learn to increase your odds of success in everything from true love to the stock market. For thousands of years, the twin forces of chance and mischance have beguiled humanity like none other. Why does fortune smile on some people, and smirk on others? What is luck, and why does it so often visit the undeserving? How can we predict the random events happening around us? Even better, how can we manipulate them? In this delightful and lucid voyage through the realm of the random, Dr. Aczel once again makes higher mathematics intelligible to us.

The Night Is Large: Collected Essays, 1938-1995


Martin Gardner - 1996
    Delving into an immense range of topics, from philosophy and literature to social criticism to mathematics and science, with essays that date from 1930s to the 1990s, Martin Gardner has astounded readers with his insight and erudition. The Night Is Large is the crowning achievement of his extraordinary career.

Thinking In Numbers: On Life, Love, Meaning, and Math


Daniel Tammet - 2012
    In Tammet's world, numbers are beautiful and mathematics illuminates our lives and minds. Using anecdotes, everyday examples, and ruminations on history, literature, and more, Tammet allows us to share his unique insights and delight in the way numbers, fractions, and equations underpin all our lives. Inspired by the complexity of snowflakes, Anne Boleyn's eleven fingers, or his many siblings, Tammet explores questions such as why time seems to speed up as we age, whether there is such a thing as an average person, and how we can make sense of those we love. Thinking In Numbers will change the way you think about math and fire your imagination to see the world with fresh eyes.

A World Without Time: The Forgotten Legacy of Gödel And Einstein


Palle Yourgrau - 2004
    By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Godel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.

Group Theory in the Bedroom, and Other Mathematical Diversions


Brian Hayes - 2008
    (The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.

Game Theory: A Nontechnical Introduction


Morton D. Davis - 1970
    . . a most valuable contribution." — Douglas R. Hofstadter, author of Gödel, Escher, BachThe foundations of game theory were laid by John von Neumann, who in 1928 proved the basic minimax theorem, and with the 1944 publication of the Theory of Games and Economic Behavior, the field was established. Since then, game theory has become an enormously important discipline because of its novel mathematical properties and its many applications to social, economic, and political problems.Game theory has been used to make investment decisions, pick jurors, commit tanks to battle, allocate business expenses equitably — even to measure a senator's power, among many other uses. In this revised edition of his highly regarded work, Morton Davis begins with an overview of game theory, then discusses the two-person zero-sum game with equilibrium points; the general, two-person zero-sum game; utility theory; the two-person, non-zero-sum game; and the n-person game.A number of problems are posed at the start of each chapter and readers are given a chance to solve them before moving on. (Unlike most mathematical problems, many problems in game theory are easily understood by the lay reader.) At the end of the chapter, where solutions are discussed, readers can compare their "common sense" solutions with those of the author. Brimming with applications to an enormous variety of everyday situations, this book offers readers a fascinating, accessible introduction to one of the most fruitful and interesting intellectual systems of our time.

The Man Who Counted Infinity and Other Short Stories from Science, History and Philosophy


Sašo Dolenc - 2012
    The objective here is to explain science in a simple, attractive and fun form that is open to all.The first axiom of this approach was set out as follows: “We believe in the magic of science. We hope to show you that sci-ence is not a secret art, accessible only to a dedicated few. It involves learning about nature and society, and aspects of our existence which affect us all, and which we should all therefore have the chance to understand. We shall interpret science for those who might not speak its language fluently, but want to understand its meaning. We don’t teach, we just tell stories about the beginnings of science, the natural phenomena and the underlying principles through which they occur, and the lives of the people who discovered them.”The aim of the writings collected in this series is to present some key scientific events, ideas and personalities in the form of short stories that are easy and fun to read. Scientific and philo-sophical concepts are explained in a way that anyone may under-stand. Each story may be read separately, but at the same time they all band together to form a wide-ranging introduction to the history of science and areas of contemporary scientific research, as well as some of the recurring problems science has encountered in history and the philosophical dilemmas it raises today.Review“If I were the only survivor on a remote island and all I had with me were this book, a Swiss army knife and a bottle, I would throw the bottle into the sea with the note: ‘Don’t worry, I have everything I need.’”— Ciril Horjak, alias Dr. Horowitz, a comic artist“The writing is understandable, but never simplistic. Instructive, but never patronizing. Straightforward, but never trivial. In-depth, but never too intense.”— Ali Žerdin, editor at Delo, the main Slovenian newspaper“Does science think? Heidegger once answered this question with a decisive No. The writings on modern science skillfully penned by Sašo Dolenc, these small stories about big stories, quickly convince us that the contrary is true. Not only does science think in hundreds of unexpected ways, its intellectual challenges and insights are an inexhaustible source of inspiration and entertainment. The clarity of thought and the lucidity of its style make this book accessible to anyone … in the finest tradition of popularizing science, its achievements, dilemmas and predicaments.”— Mladen Dolar, philosopher and author of A Voice and Nothing More“Sašo Dolenc is undoubtedly one of our most successful authors in the field of popular science, possessing the ability to explain complex scientific achievements to a broader audience in a clear and captivating way while remaining precise and scientific. His collection of articles is of particular importance because it encompasses all areas of modern science in an unassuming, almost light-hearted manner.”— Boštjan Žekš, physicist and former president of the Slovenian Academy of Sciences and Arts

A Mathematician's Lament: How School Cheats Us Out of Our Most Fascinating and Imaginative Art Form


Paul Lockhart - 2009
    Witty and accessible, Paul Lockhart’s controversial approach will provoke spirited debate among educators and parents alike and it will alter the way we think about math forever.Paul Lockhart, has taught mathematics at Brown University and UC Santa Cruz. Since 2000, he has dedicated himself to K-12 level students at St. Ann’s School in Brooklyn, New York.

Prisoner's Dilemma: John von Neumann, Game Theory, and the Puzzle of the Bomb


William Poundstone - 1992
    Though the answers may seem simple, their profound implications make the prisoner's dilemma one of the great unifying concepts of science. Watching players bluff in a poker game inspired John von Neumann--father of the modern computer and one of the sharpest minds of the century--to construct game theory, a mathematical study of conflict and deception. Game theory was readily embraced at the RAND Corporation, the archetypical think tank charged with formulating military strategy for the atomic age, and in 1950 two RAND scientists made a momentous discovery.Called the prisoner's dilemma, it is a disturbing and mind-bending game where two or more people may betray the common good for individual gain. Introduced shortly after the Soviet Union acquired the atomic bomb, the prisoner's dilemma quickly became a popular allegory of the nuclear arms race. Intellectuals such as von Neumann and Bertrand Russell joined military and political leaders in rallying to the preventive war movement, which advocated a nuclear first strike against the Soviet Union. Though the Truman administration rejected preventive war the United States entered into an arms race with the Soviets and game theory developed into a controversial tool of public policy--alternately accused of justifying arms races and touted as the only hope of preventing them.A masterful work of science writing, Prisoner's Dilemma weaves together a biography of the brilliant and tragic von Neumann, a history of pivotal phases of the cold war, and an investigation of game theory's far-reaching influence on public policy today. Most important, Prisoner's Dilemma is the incisive story of a revolutionary idea that has been hailed as a landmark of twentieth-century thought.

Theory of Games and Economic Behavior


John von Neumann - 1944
    What began more than sixty years ago as a modest proposal that a mathematician and an economist write a short paper together blossomed, in 1944, when Princeton University Press published Theory of Games and Economic Behavior. In it, John von Neumann and Oskar Morgenstern conceived a groundbreaking mathematical theory of economic and social organization, based on a theory of games of strategy. Not only would this revolutionize economics, but the entirely new field of scientific inquiry it yielded--game theory--has since been widely used to analyze a host of real-world phenomena from arms races to optimal policy choices of presidential candidates, from vaccination policy to major league baseball salary negotiations. And it is today established throughout both the social sciences and a wide range of other sciences.This sixtieth anniversary edition includes not only the original text but also an introduction by Harold Kuhn, an afterword by Ariel Rubinstein, and reviews and articles on the book that appeared at the time of its original publication in the New York Times, tthe American Economic Review, and a variety of other publications. Together, these writings provide readers a matchless opportunity to more fully appreciate a work whose influence will yet resound for generations to come.

Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life


Albert-László Barabási - 2002
    Albert-László Barabási, the nation’s foremost expert in the new science of networks and author of Bursts, takes us on an intellectual adventure to prove that social networks, corporations, and living organisms are more similar than previously thought. Grasping a full understanding of network science will someday allow us to design blue-chip businesses, stop the outbreak of deadly diseases, and influence the exchange of ideas and information. Just as James Gleick and the Erdos–Rényi model brought the discovery of chaos theory to the general public, Linked tells the story of the true science of the future and of experiments in statistical mechanics on the internet, all vital parts of what would eventually be called the Barabási–Albert model.

A Beautiful Math: John Nash, Game Theory, and the Modern Quest for a Code of Nature


Tom Siegfried - 2006
    Today Nash's beautiful math has become a universal language for research in the social sciences and has infiltrated the realms of evolutionary biology, neuroscience, and even quantum physics. John Nash won the 1994 Nobel Prize in economics for pioneering research published in the 1950s on a new branch of mathematics known as game theory. At the time of Nash's early work, game theory was briefly popular among some mathematicians and Cold War analysts. But it remained obscure until the 1970s when evolutionary biologists began applying it to their work. In the 1980s economists began to embrace game theory. Since then it has found an ever expanding repertoire of applications among a wide range of scientific disciplines. Today neuroscientists peer into game players' brains, anthropologists play games with people from primitive cultures, biologists use games to explain the evolution of human language, and mathematicians exploit games to better understand social networks. A common thread connecting much of this research is its relevance to the ancient quest for a science of human social behavior, or a Code of Nature, in the spirit of the fictional science of psychohistory described in the famous Foundation novels by the late Isaac Asimov. In A Beautiful Math, acclaimed science writer Tom Siegfried describes how game theory links the life sciences, social sciences, and physical sciences in a way that may bring Asimov's dream closer to reality.

The Joy of Mathematics: Discovering Mathematics All Around You


Theoni Pappas - 1986
    Written by the well-known mathematics teacher consultant, this volume's collection of over 200 clearly illustrated mathematical ideas, concepts, puzzles, and games shows where they turn up in the real world. You'll find out what a googol is, visit hotel infinity, read a thorny logic problem that was stumping them back in the 8th century.THE JOY OF MATHEMATICS is designed to be opened at random...it's mini essays are self-contained providing the reader with an enjoyable way to explore and experience mathematics at its best.

This Will Make You Smarter: New Scientific Concepts to Improve Your Thinking


John Brockman - 2012
    Their visionary answers flow from the frontiers of psychology, philosophy, economics, physics, sociology, and more. Surprising and enlightening, these insights will revolutionize the way you think about yourself and the world.Contributors include:Daniel Kahneman on the “focusing illusion”Jonah Lehrer on controlling attentionRichard Dawkins on experimentationAubrey De Grey on conquering our fear of the unknownMartin Seligman on the ingredients of well-beingNicholas Carr on managing “cognitive load”Steven Pinker on win-win negotiatingDaniel Goleman on understanding our connection to the natural worldMatt Ridley on tapping collective intelligenceLisa Randall on effective theorizingBrian Eno on “ecological vision”J. Craig Venter on the multiple possible origins of life  Helen Fisher on temperamentSam Harris on the flow of thoughtLawrence Krauss on living with uncertainty

This Explains Everything: Deep, Beautiful, and Elegant Theories of How the World Works


John BrockmanSean Carroll - 2013
    Why do we recognize patterns? Is there such a thing as positive stress? Are we genetically programmed to be in conflict with each other? Those are just some of the 150 questions that the world's best scientific minds answer with elegant simplicity.With contributions from Jared Diamond, Richard Dawkins, Nassim Taleb, Brian Eno, Steven Pinker, and more, everything is explained in fun, uncomplicated terms that make the most complex concepts easy to comprehend.