Book picks similar to
Theorem Proving in Lean by Jeremy Avigad
computers
cs-programming
mathematics
mmath
The Advent of the Algorithm: The 300-Year Journey from an Idea to the Computer
David Berlinski - 2000
A basic idea that proved elusive for hundreds of years and bent the minds of the greatest thinkers in the world, the algorithm is what made the modern world possible. Without the algorithm, there would have been no computer, no Internet, no virtual reality, no e-mail, or any other technological advance that we rely on every day.In The Advent of the Algorithm, David Berlinski combines science, history, and math to explain and explore the intriguing story of how the algorithm was finally discovered by a succession of mathematicians and logicians, and how this paved the way for the digital age. Beginning with Leibniz and culminating in the middle of the twentieth century with the groundbreaking work of Gödel and Turing, The Advent of the Algorithm is an epic tale told with clarity and imaginative brilliance.
Design Patterns: Elements of Reusable Object-Oriented Software
Erich Gamma - 1994
Previously undocumented, these 23 patterns allow designers to create more flexible, elegant, and ultimately reusable designs without having to rediscover the design solutions themselves.The authors begin by describing what patterns are and how they can help you design object-oriented software. They then go on to systematically name, explain, evaluate, and catalog recurring designs in object-oriented systems. With Design Patterns as your guide, you will learn how these important patterns fit into the software development process, and how you can leverage them to solve your own design problems most efficiently. Each pattern describes the circumstances in which it is applicable, when it can be applied in view of other design constraints, and the consequences and trade-offs of using the pattern within a larger design. All patterns are compiled from real systems and are based on real-world examples. Each pattern also includes code that demonstrates how it may be implemented in object-oriented programming languages like C++ or Smalltalk.
Understanding Computation: From Simple Machines to Impossible Programs
Tom Stuart - 2013
Understanding Computation explains theoretical computer science in a context you’ll recognize, helping you appreciate why these ideas matter and how they can inform your day-to-day programming.Rather than use mathematical notation or an unfamiliar academic programming language like Haskell or Lisp, this book uses Ruby in a reductionist manner to present formal semantics, automata theory, and functional programming with the lambda calculus. It’s ideal for programmers versed in modern languages, with little or no formal training in computer science.* Understand fundamental computing concepts, such as Turing completeness in languages* Discover how programs use dynamic semantics to communicate ideas to machines* Explore what a computer can do when reduced to its bare essentials* Learn how universal Turing machines led to today’s general-purpose computers* Perform complex calculations, using simple languages and cellular automata* Determine which programming language features are essential for computation* Examine how halting and self-referencing make some computing problems unsolvable* Analyze programs by using abstract interpretation and type systems
On LISP: Advanced Techniques for Common LISP
Paul Graham - 1993
On Lisp explains the reasons behind Lisp's growing popularity as a mainstream programming language. On Lisp is a comprehensive study of advanced Lisp techniques, with bottom-up programming as the unifying theme. It gives the first complete description of macros and macro applications. The book also covers important subjects related to bottom-up programming, including functional programming, rapid prototyping, interactive development, and embedded languages. The final chapter takes a deeper look at object-oriented programming than previous Lisp books, showing the step-by-step construction of a working model of the Common Lisp Object System (CLOS). As well as an indispensable reference, On Lisp is a source of software. Its examples form a library of functions and macros that readers will be able to use in their own Lisp programs.
The Rust Programming Language
Steve Klabnik
This is the undisputed go-to guide to Rust, written by two members of the Rust core team, with feedback and contributions from 42 members of the community. The book assumes that you’ve written code in another programming language but makes no assumptions about which one, meaning the material is accessible and useful to developers from a wide variety of programming backgrounds.Known by the Rust community as "The Book," The Rust Programming Language includes concept chapters, where you’ll learn about a particular aspect of Rust, and project chapters, where you’ll apply what you’ve learned so far to build small programs.The Book opens with a quick hands-on project to introduce the basics then explores key concepts in depth, such as ownership, the type system, error handling, and fearless concurrency. Next come detailed explanations of Rust-oriented perspectives on topics like pattern matching, iterators, and smart pointers, with concrete examples and exercises--taking you from theory to practice.The Rust Programming Language will show you how to: Grasp important concepts unique to Rust like ownership, borrowing, and lifetimes Use Cargo, Rust’s built-in package manager, to build and maintain your code, including downloading and building dependencies Effectively use Rust’s zero-cost abstractions and employ your ownYou’ll learn to develop reliable code that’s speed and memory efficient, while avoiding the infamous and arcane programming pitfalls common at the systems level. When you need to dive down into lower-level control, this guide will show you how without taking on the customary risk of crashes or security holes and without requiring you to learn the fine points of a fickle toolchain.You’ll also learn how to create command line programs, build single- and multithreaded web servers, and much more.The Rust Programming Language fully embraces Rust’s potential to empower its users. This friendly and approachable guide will help you build not only your knowledge of Rust but also your ability to program with confidence in a wider variety of domains.
The Computer and the Brain
John von Neumann - 1958
This work represents the views of a mathematician on the analogies between computing machines and the living human brain.
Think Like a Programmer: An Introduction to Creative Problem Solving
V. Anton Spraul - 2012
In this one-of-a-kind text, author V. Anton Spraul breaks down the ways that programmers solve problems and teaches you what other introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single programming concept, like classes, pointers, and recursion, and open-ended exercises throughout challenge you to apply your knowledge. You'll also learn how to:Split problems into discrete components to make them easier to solve Make the most of code reuse with functions, classes, and libraries Pick the perfect data structure for a particular job Master more advanced programming tools like recursion and dynamic memory Organize your thoughts and develop strategies to tackle particular types of problems Although the book's examples are written in C++, the creative problem-solving concepts they illustrate go beyond any particular language; in fact, they often reach outside the realm of computer science. As the most skillful programmers know, writing great code is a creative art—and the first step in creating your masterpiece is learning to Think Like a Programmer.
Python Crash Course: A Hands-On, Project-Based Introduction to Programming
Eric Matthes - 2015
You'll also learn how to make your programs interactive and how to test your code safely before adding it to a project. In the second half of the book, you'll put your new knowledge into practice with three substantial projects: a Space Invaders-inspired arcade game, data visualizations with Python's super-handy libraries, and a simple web app you can deploy online.As you work through Python Crash Course, you'll learn how to: Use powerful Python libraries and tools, including matplotlib, NumPy, and PygalMake 2D games that respond to keypresses and mouse clicks, and that grow more difficult as the game progressesWork with data to generate interactive visualizationsCreate and customize simple web apps and deploy them safely onlineDeal with mistakes and errors so you can solve your own programming problemsIf you've been thinking seriously about digging into programming, Python Crash Course will get you up to speed and have you writing real programs fast. Why wait any longer? Start your engines and code!
Designing Data-Intensive Applications
Martin Kleppmann - 2015
Difficult issues need to be figured out, such as scalability, consistency, reliability, efficiency, and maintainability. In addition, we have an overwhelming variety of tools, including relational databases, NoSQL datastores, stream or batch processors, and message brokers. What are the right choices for your application? How do you make sense of all these buzzwords?In this practical and comprehensive guide, author Martin Kleppmann helps you navigate this diverse landscape by examining the pros and cons of various technologies for processing and storing data. Software keeps changing, but the fundamental principles remain the same. With this book, software engineers and architects will learn how to apply those ideas in practice, and how to make full use of data in modern applications. Peer under the hood of the systems you already use, and learn how to use and operate them more effectively Make informed decisions by identifying the strengths and weaknesses of different tools Navigate the trade-offs around consistency, scalability, fault tolerance, and complexity Understand the distributed systems research upon which modern databases are built Peek behind the scenes of major online services, and learn from their architectures
Data Smart: Using Data Science to Transform Information into Insight
John W. Foreman - 2013
Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
The Ultimate Fate Of The Universe
Jamal Nazrul Islam - 1983
To understand the universe in the far future, we must first describe its present state and structure on the grand scale, and how its present properties arose. Dr Islam explains these topics in an accessible way in the first part of the book. From this background he speculates about the future evolution of the universe and predicts the major changes that will occur. The author has largely avoided mathematical formalism and therefore the book is well suited to general readers with a modest background knowledge of physics and astronomy.
Introducing Python: Modern Computing in Simple Packages
Bill Lubanovic - 2013
In addition to giving a strong foundation in the language itself, Lubanovic shows how to use it for a range of applications in business, science, and the arts, drawing on the rich collection of open source packages developed by Python fans.It's impressive how many commercial and production-critical programs are written now in Python. Developed to be easy to read and maintain, it has proven a boon to anyone who wants applications that are quick to write but robust and able to remain in production for the long haul.This book focuses on the current version of Python, 3.x, while including sidebars about important differences with 2.x for readers who may have to deal with programs in that version.
The Go Programming Language
Alan A.A. Donovan - 2015
It has been winning converts from dynamic language enthusiasts as well as users of traditional compiled languages. The former appreciate the robustness and efficiency that Go's lightweight type system brings to their code; the latter find Go's simplicity and fast tools a refreshing change. Thanks to its well-designed standard libraries and its excellent support for concurrent programming, Go is fast becoming the language of choice for distributed systems. The Go Programming Language is the definitive book on Go for the working programmer. It assumes no prior knowledge of Go, nor any other specific programming language, so you'll find it an accessible guide whether you come from JavaScript, Ruby, Python, Java, or C++. The book will quickly get you started using Go effectively from the beginning, and by the end, you will know how to use it well to write clear, idiomatic and efficient programs to solve real-world problems. You'll understand not just how to use its standard libraries, but how they work, and how to apply the same design techniques to your own projects. The earlier chapters will introduce you to the basic concepts of Go programming---numbers, strings, functions---while at the same time presenting important computer science concepts like recursion, and useful examples of graphics, UTF-8, and error handling. The chapters on methods and interfaces will show you a new way to think about object-oriented programming; the chapter on concurrency explains why concurrency is so important in modern programming, and how Go helps you handle it well. You'll also learn about Go's pragmatic but effective approach to testing; how to build, test, and manage projects using the go tool, and the art of metaprogramming using reflection. The book contains hundreds of interesting and practical examples that cover the whole language and a wide range of applications. The code samples from the book are available for download from gopl.io.
R for Dummies
Joris Meys - 2012
R is packed with powerful programming capabilities, but learning to use R in the real world can be overwhelming for even the most seasoned statisticians. This easy-to-follow guide explains how to use R for data processing and statistical analysis, and then, shows you how to present your data using compelling and informative graphics. You'll gain practical experience using R in a variety of settings and delve deeper into R's feature-rich toolset.Includes tips for the initial installation of RDemonstrates how to easily perform calculations on vectors, arrays, and lists of dataShows how to effectively visualize data using R's powerful graphics packagesGives pointers on how to find, install, and use add-on packages created by the R communityProvides tips on getting additional help from R mailing lists and websitesWhether you're just starting out with statistical analysis or are a procedural programming pro, "R For Dummies" is the book you need to get the most out of R.
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data