Book picks similar to
Pure Mathematics: A First Course by J.K. Backhouse
maths
pure-mathematics
1
math
An Introduction to Non-Classical Logic
Graham Priest - 2001
Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.
Remarks on the Foundations of Mathematics
Ludwig Wittgenstein - 1956
It was his feeling that a proper analysis of the use of language would clarify concepts and lead to the solution of (what seem to be) philosophical problems.Sometimes, Wittgenstein's expository method is pre-Socratic: a flow of disconnected statements, not unlike Heraclitean fragments, that range from clear aphorisms to cryptic oracles. Elsewhere, there are brief Socratic dialogues with imaginary persons, opponents of equally severe seriousness, representatives of the other half of Wittgenstein strove for total clarity of language as a means of solving philosophical problems, but some of his most meaningful statements here are expressed suggestively, subjectively, poetically.
The Fabulous Fibonacci Numbers
Alfred S. Posamentier - 2007
In this simple pattern beginning with two ones, each succeeding number is the sum of the two numbers immediately preceding it (1, 1, 2, 3, 5, 8, 13, 21, ad infinitum). Far from being just a curiosity, this sequence recurs in structures found throughout nature - from the arrangement of whorls on a pinecone to the branches of certain plant stems. All of which is astounding evidence for the deep mathematical basis of the natural world. With admirable clarity, two veteran math educators take us on a fascinating tour of the many ramifications of the Fibonacci numbers. They begin with a brief history of a distinguished Italian discoverer, who, among other accomplishments, was responsible for popularizing the use of Arabic numerals in the West. Turning to botany, the authors demonstrate, through illustrative diagrams, the unbelievable connections between Fibonacci numbers and natural forms (pineapples, sunflowers, and daisies are just a few examples). In art, architecture, the stock market, and other areas of society and culture, they point out numerous examples of the Fibonacci sequence as well as its derivative, the "golden ratio." And of course in mathematics, as the authors amply demonstrate, there are almost boundless applications in probability, number theory, geometry, algebra, and Pascal's triangle, to name a few.Accessible and appealing to even the most math-phobic individual, this fun and enlightening book allows the reader to appreciate the elegance of mathematics and its amazing applications in both natural and cultural settings.
A First Course in Abstract Algebra
John B. Fraleigh - 1967
Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures. KEY TOPICS: Sets and Relations; GROUPS AND SUBGROUPS; Introduction and Examples; Binary Operations; Isomorphic Binary Structures; Groups; Subgroups; Cyclic Groups; Generators and Cayley Digraphs; PERMUTATIONS, COSETS, AND DIRECT PRODUCTS; Groups of Permutations; Orbits, Cycles, and the Alternating Groups; Cosets and the Theorem of Lagrange; Direct Products and Finitely Generated Abelian Groups; Plane Isometries; HOMOMORPHISMS AND FACTOR GROUPS; Homomorphisms; Factor Groups; Factor-Group Computations and Simple Groups; Group Action on a Set; Applications of G-Sets to Counting; RINGS AND FIELDS; Rings and Fields; Integral Domains; Fermat's and Euler's Theorems; The Field of Quotients of an Integral Domain; Rings of Polynomials; Factorization of Polynomials over a Field; Noncommutative Examples; Ordered Rings and Fields; IDEALS AND FACTOR RINGS; Homomorphisms and Factor Rings; Prime and Maximal Ideas; Gr�bner Bases for Ideals; EXTENSION FIELDS; Introduction to Extension Fields; Vector Spaces; Algebraic Extensions; Geometric Constructions; Finite Fields; ADVANCED GROUP THEORY; Isomorphism Theorems; Series of Groups; Sylow Theorems; Applications of the Sylow Theory; Free Abelian Groups; Free Groups; Group Presentations; GROUPS IN TOPOLOGY; Simplicial Complexes and Homology Groups; Computations of Homology Groups; More Homology Computations and Applications; Homological Algebra; Factorization; Unique Factorization Domains; Euclidean Domains; Gaussian Integers and Multiplicative Norms; AUTOMORPHISMS AND GALOIS THEORY; Automorphisms of Fields; The Isomorphism Extension Theorem; Splitting Fields; Separable Extensions; Totally Inseparable Extensions; Galois Theory; Illustrations of Galois Theory; Cyclotomic Extensions; Insolvability of the Quintic; Matrix Algebra MARKET: For all readers interested in abstract algebra.
Computers and Intractability: A Guide to the Theory of NP-Completeness
Michael R. Garey - 1979
Johnson. It was the first book exclusively on the theory of NP-completeness and computational intractability. The book features an appendix providing a thorough compendium of NP-complete problems (which was updated in later printings of the book). The book is now outdated in some respects as it does not cover more recent development such as the PCP theorem. It is nevertheless still in print and is regarded as a classic: in a 2006 study, the CiteSeer search engine listed the book as the most cited reference in computer science literature.
Solutions of Selected Problems for Mathematical Methods in the Physical
Mary L. Boas - 1984
Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.
The History of the Calculus and Its Conceptual Development
Carl B. Boyer - 1959
Early beginnings in antiquity, medieval contributions, and a century of anticipation lead up to a consideration of Newton and Leibniz, the period of indecison that followed them, and the final rigorous formulation that we know today.
A Mathematician Plays The Stock Market
John Allen Paulos - 2003
In A Mathematician Plays the Stock Market , best-selling author John Allen Paulos employs his trademark stories, vignettes, paradoxes, and puzzles to address every thinking reader's curiosity about the market -- Is it efficient? Is it random? Is there anything to technical analysis, fundamental analysis, and other supposedly time-tested methods of picking stocks? How can one quantify risk? What are the most common scams? Are there any approaches to investing that truly outperform the major indexes? But Paulos's tour through the irrational exuberance of market mathematics doesn't end there. An unrequited (and financially disastrous) love affair with WorldCom leads Paulos to question some cherished ideas of personal finance. He explains why "data mining" is a self-fulfilling belief, why "momentum investing" is nothing more than herd behavior with a lot of mathematical jargon added, why the ever-popular Elliot Wave Theory cannot be correct, and why you should take Warren Buffet's "fundamental analysis" with a grain of salt. Like Burton Malkiel's A Random Walk Down Wall Street , this clever and illuminating book is for anyone, investor or not, who follows the markets -- or knows someone who does.
Cosmology: Philosophy & Physics
alexis karpouzos - 2015
Cosmic Universe and Human History, microcosm and macrocosm, inorganic and living matter coexist and form a unique unity manifested in multiple forms. The Physical and the Mental constitute the form and the content of the World. The world does not consist of subjects and objects, the “subject” and the “object” are metaphysical abstractions of the single and indivisible Wholeness. Man’s finite knowledge separates the Whole into parts and studies fragmentarily the beings. The Wholeness is manifested in multiple forms and each form encapsulates the Wholeness. The rational explanation of the excerpts and the intuitive apprehension of the Wholeness are required to combine and create the open thought and the holistic knowledge. This means that the measurement should be defined by the ''measure'', but the responsibility for determining the ''measure'' depends on the man. This requires that man overcomes the anthropocentric arrogance and the narcissistic selfishness and he joins the Cosmic World in a friendly and creative manner.
Tic Tac Toe: 8 Strategies to Win Every Game
Puzzleland - 2016
Make the bet more attractive for them: the game could have 10 or 20 rounds, and you’ll give them the privilege of starting first in every s-i-n-g-l-e round. “Piece of cake!” they will think and they will take the bet. Only to discover in despair, 10 or 20 rounds later, that it is impossible to beat you, even once. This book reveals a simple system that will help you never lose a single game from the moment you learn them. Let us repeat that.After reading this book and for the rest of your life, you will never, ever lose a game of Tic-Tac-Toe again! How is it possible never to lose in Tic-Tac-Toe? Tic-Tac-Toe is a “solved” game, meaning that there are mathematically proven strategies to defend yourself against losing. If you play with these optimal strategies in mind, you may win and you can’t lose. If your opponent also plays with the optimal strategies in mind, neither will win, and the game will always end in a draw.However, very few people really know these strategies.This book reveals an easy system of only 8 strategies that will make you a Tic-Tac-Toe Master. If you learn and start applying these 8 strategies, we guarantee that you will never lose a game of Tic-Tac-Toe again. Is it easy to learn these strategies? Very easy! These 8 strategies are presented in 8 mini chapters, with illustrations and step-by-step explanations. Even a kid can read this book and learn the strategies!In just 1 hour you will have learnt all 8 strategies and you will be ready to start applying them. Will I have to think too hard to apply these strategies? As a matter of fact, all you have to do is to memorize our simple system. As soon as you learn this system, every game will be a no-brainer for you. Our system tells you exactly how to play or how to respond to your opponent’s move. Simple as A-B-C.For example, if your opponent plays first and chooses a corner, our system tells you exactly how to respond in order to eliminate any chance of losing the game. Is this for real? Do you guarantee that I will never lose a TTT game again? YES!!! We challenge you to read this book and then immediately start playing Tic-Tac-Toe online, against a computer, applying everything you have learnt. You will discover that even a computer can’t beat you.Your new super powers in Tic-Tac-Toe will blow your mind! Start right now! Buy the book, learn the strategies and NEVER lose a Tic-Tac-Toe game again from that moment and for the rest of your life!Scroll to the top of the page and click the BUY WITH 1-CLICK Button!
King of Infinite Space: Donald Coxeter, the Man Who Saved Geometry
Siobhan Roberts - 2006
Yet geometry is so much more than shapes and numbers; indeed, it governs much of our lives—from architecture and microchips to car design, animated movies, the molecules of food, even our own body chemistry. And as Siobhan Roberts elegantly conveys in The King of Infinite Space, there can be no better guide to the majesty of geometry than Donald Coxeter, perhaps the greatest geometer of the twentieth century.Many of the greatest names in intellectual history—Pythagoras, Plato, Archimedes, Euclid— were geometers, and their creativity and achievements illuminate those of Coxeter, revealing geometry to be a living, ever-evolving endeavor, an intellectual adventure that has always been a building block of civilization. Coxeter's special contributions—his famed Coxeter groups and Coxeter diagrams—have been called by other mathematicians "tools as essential as numbers themselves," but his greatest achievement was to almost single-handedly preserve the tradition of classical geometry when it was under attack in a mathematical era that valued all things austere and rational.Coxeter also inspired many outside the field of mathematics. Artist M. C. Escher credited Coxeter with triggering his legendary Circle Limit patterns, while futurist/inventor Buckminster Fuller acknowledged that his famed geodesic dome owed much to Coxeter's vision. The King of Infinite Space is an elegant portal into the fascinating, arcane world of geometry.
Essentials of Statistics
Mario F. Triola - 2001
What do you want to learn?
Discover the Power of Real Data
Mario Triola remains the market-leading statistics author by engaging readers of each edition with an abundance of real data in the examples, applications, and exercises. Statistics is all around us, and Triola helps readers understand how this course will impact their lives beyond the classroom–as consumers, citizens, and professionals. Essentials of Statistics, Fourth Edition is a more economical and streamlined introductory statistics text. Drawn from Triola’s Elementary Statistics, Eleventh Edition, this text provides the same student-friendly approach with material presented in a real-world context. The Fourth Edition contains more than 1,700 exercises (18% more than the previous edition); 89% are new and 81% use real data. The book also contains hundreds of examples; 86% are new and 92% use real data. By analyzing real data, readers are able to connect abstract concepts to the world at large, teaching them to think statistically and apply their conceptual understanding using the same methods that professional statisticians employ. Datasets and other resources (where applicable) for this book are available here.
Footballistics
James Coventry - 2018
The nature of football continually changes, which means its analysis must also keep pace. This book is for students, thinkers, and theorists of the game.'Ted Hopkins - Carlton premiership player, author, and co-founder of Champion Data. Australian Rules football has been described as the most data-rich sport on Earth. Every time and everywhere an AFL side takes to the field, it is shadowed by an army of statisticians and number crunchers. The information they gather has become the sport's new language and currency. ABC journalist James Coventry, author of the acclaimed Time and Space, has joined forces with a group of razor-sharp analysts to decipher the data, and to use it to question some of football's long-held truisms. Do umpires really favour the home side? Has goal kicking accuracy deteriorated? Is Geelong the true master of the draft? Are blonds unfairly favoured in Brownlow medal voting? And are Victorians the most passionate fans? Through a blend of entertaining storytelling and expert analysis, this book will answer more questions about footy than you ever thought to ask. Praise for Time and Space:'Brilliant, masterful' - The Guardian'Arguably one of the most important books yet written on Australian Rules football.' - Inside History'Should find its way into the hands of every coach.' - AFL Record
Math Through the Ages: A Gentle History for Teachers and Others
William P. Berlinghoff - 2002
Each sketch contains Questions and Projects to help you learn more about its topic and to see how its main ideas fit into the bigger picture of history. The 25 short stories are preceded by a 56-page bird's-eye overview of the entire panorama of mathematical history, a whirlwind tour of the most important people, events, and trends that shaped the mathematics we know today. Reading suggestions after each sketch provide starting points for readers who want to pursue a topic further."
Poetry of the Universe
Robert Osserman - 1995
40 illustrations throughout.