Book picks similar to
Quantitative Analysis, Derivatives Modeling, and Trading Strategies: In the Presence of Counterparty Credit Risk for the Fixed-Income Market by Yi Tang
applied-economics
business-finance-economics
computer-science
mathematics
Algebra
Michael Artin - 1991
Linear algebra is tightly integrated into the text.
Algorithm Design
Jon Kleinberg - 2005
The book teaches a range of design and analysis techniques for problems that arise in computing applications. The text encourages an understanding of the algorithm design process and an appreciation of the role of algorithms in the broader field of computer science.
Serious Cryptography: A Practical Introduction to Modern Encryption
Jean-Philippe Aumasson - 2017
You’ll learn about authenticated encryption, secure randomness, hash functions, block ciphers, and public-key techniques such as RSA and elliptic curve cryptography.You’ll also learn: - Key concepts in cryptography, such as computational security, attacker models, and forward secrecy - The strengths and limitations of the TLS protocol behind HTTPS secure websites - Quantum computation and post-quantum cryptography - About various vulnerabilities by examining numerous code examples and use cases - How to choose the best algorithm or protocol and ask vendors the right questionsEach chapter includes a discussion of common implementation mistakes using real-world examples and details what could go wrong and how to avoid these pitfalls. Whether you’re a seasoned practitioner or a beginner looking to dive into the field, Serious Cryptography will provide a complete survey of modern encryption and its applications.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
An Introduction to Probability Theory and Its Applications, Volume 1
William Feller - 1968
Beginning with the background and very nature of probability theory, the book then proceeds through sample spaces, combinatorial analysis, fluctuations in coin tossing and random walks, the combination of events, types of distributions, Markov chains, stochastic processes, and more. The book's comprehensive approach provides a complete view of theory along with enlightening examples along the way.
The Joy of Game Theory: An Introduction to Strategic Thinking
Presh Talwalkar - 2013
Articles from Game Theory Tuesdays have been referenced in The Freakonomics Blog, Yahoo Finance, and CNN.com. The second edition includes many streamlined explanations and incorporates suggestions from readers of the first edition. Game theory is the study of interactive decision making--that is, in situations where each person's action affects the outcome for the whole group. Game theory is a beautiful subject and this book will teach you how to understand the theory and practically implement solutions through a series of stories and the aid of over 30 illustrations. This book has two primary objectives. (1) To help you recognize strategic games, like the Prisoner's Dilemma, Bertrand Duopoly, Hotelling's Game, the Game of Chicken, and Mutually Assured Destruction. (2) To show you how to make better decisions and change the game, a powerful concept that can transform no-win situations into mutually beneficial outcomes. You'll learn how to negotiate better by making your threats credible, sometimes limiting options or burning bridges, and thinking about new ways to create better outcomes. As these goals indicate, game theory is about more than board games and gambling. It all seems so simple, and yet that definition belies the complexity of game theory. While it may only take seconds to get a sense of game theory, it takes a lifetime to appreciate and master it. This book will get you started.
Programming in Haskell
Graham Hutton - 2006
This introduction is ideal for beginners: it requires no previous programming experience and all concepts are explained from first principles via carefully chosen examples. Each chapter includes exercises that range from the straightforward to extended projects, plus suggestions for further reading on more advanced topics. The author is a leading Haskell researcher and instructor, well-known for his teaching skills. The presentation is clear and simple, and benefits from having been refined and class-tested over several years. The result is a text that can be used with courses, or for self-learning. Features include freely accessible Powerpoint slides for each chapter, solutions to exercises and examination questions (with solutions) available to instructors, and a downloadable code that's fully compliant with the latest Haskell release.
Philosophy of Mathematics: Selected Readings
Paul Benacerraf - 1983
In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Godel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.
Cryptography: A Very Short Introduction
Fred C. Piper - 2002
It explains what algorithms do, how they are used, the risks associated with using them, and why governments should be concerned. Important areas arehighlighted, such as Stream Ciphers, block ciphers, public key algorithms, digital signatures, and applications such as e-commerce. This book highlights the explosive impact of cryptography on modern society, with, for example, the evolution of the internet and the introduction of more sophisticatedbanking methods.
Understanding Cryptography: A Textbook For Students And Practitioners
Christof Paar - 2009
Today's designers need a comprehensive understanding of applied cryptography.After an introduction to cryptography and data security, the authors explain the main techniques in modern cryptography, with chapters addressing stream ciphers, the Data Encryption Standard (DES) and 3DES, the Advanced Encryption Standard (AES), block ciphers, the RSA cryptosystem, public-key cryptosystems based on the discrete logarithm problem, elliptic-curve cryptography (ECC), digital signatures, hash functions, Message Authentication Codes (MACs), and methods for key establishment, including certificates and public-key infrastructure (PKI). Throughout the book, the authors focus on communicating the essentials and keeping the mathematics to a minimum, and they move quickly from explaining the foundations to describing practical implementations, including recent topics such as lightweight ciphers for RFIDs and mobile devices, and current key-length recommendations.The authors have considerable experience teaching applied cryptography to engineering and computer science students and to professionals, and they make extensive use of examples, problems, and chapter reviews, while the book's website offers slides, projects and links to further resources. This is a suitable textbook for graduate and advanced undergraduate courses and also for self-study by engineers.
Calculus: Early Transcendentals
James Stewart - 1995
Stewart's Calculus is successful throughout the world because he explains the material in a way that makes sense to a wide variety of readers. His explanations make ideas come alive, and his problems challenge, to reveal the beauty of calculus. Stewart's examples stand out because they are not just models for problem solving or a means of demonstrating techniques--they also encourage readers to develp an analytic view of the subject. This edition includes new problems, examples, and projects. This version of Stewart's book introduced exponential and logarithmic functions in the first chapter and their limits and derivatives are found in Chapters 2 and 3.
Fuzzy Thinking: The New Science of Fuzzy Logic
Bart Kosko - 1993
An authoritative introduction to "fuzzy logic" brings readers up to speed on the "smart" products and computers that will change all of our lives in the future.
How to Solve It: Modern Heuristics
Zbigniew Michalewicz - 2004
Publilius Syrus, Moral Sayings We've been very fortunate to receive fantastic feedback from our readers during the last four years, since the first edition of How to Solve It: Modern Heuristics was published in 1999. It's heartening to know that so many people appreciated the book and, even more importantly, were using the book to help them solve their problems. One professor, who published a review of the book, said that his students had given the best course reviews he'd seen in 15 years when using our text. There can be hardly any better praise, except to add that one of the book reviews published in a SIAM journal received the best review award as well. We greatly appreciate your kind words and personal comments that you sent, including the few cases where you found some typographical or other errors. Thank you all for this wonderful support.
Networks: A Very Short Introduction
Guido Caldarelli - 2012
It is impossible to understand the spread of an epidemic, a computer virus, large-scale blackouts, or massive extinctions without taking into account the network structure that underlies all these phenomena. In this Very Short Introduction, Guido Caldarelli and Michele Catanzaro discuss the nature and variety of networks, using everyday examples from society, technology, nature, and history to explain and understand the science of network theory. They show the ubiquitous role of networks; how networks self-organize; why the rich get richer; and how networks can spontaneously collapse. They conclude by highlighting how the findings of complex network theory have very wide and important applications in genetics, ecology, communications, economics, and sociology.