Book picks similar to
Artificial Intelligence and Games by Georgios N. Yannakakis
programming
ai
gamedev
artificial-intelligence
Computing machinery and intelligence
Alan Turing - 1950
The paper, published in 1950 in Mind, was the first to introduce his concept of what is now known as the Turing test to the general public.Published in Mind 49: page 433-460.(Source: Wikipedia)
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Test Driven Development for Embedded C
James W. Grenning - 2010
You thought TDD was for someone else, but it's not! It's for you, the embedded C programmer. TDD helps you prevent defects and build software with a long useful life. This is the first book to teach the hows and whys of TDD for C programmers. TDD is a modern programming practice C developers need to know. It's a different way to program---unit tests are written in a tight feedback loop with the production code, assuring your code does what you think. You get valuable feedback every few minutes. You find mistakes before they become bugs. You get early warning of design problems. You get immediate notification of side effect defects. You get to spend more time adding valuable features to your product. James is one of the few experts in applying TDD to embedded C. With his 1.5 decades of training, coaching, and practicing TDD in C, C++, Java, and C# he will lead you from being a novice in TDD to using the techniques that few have mastered. This book is full of code written for embedded C programmers. You don't just see the end product, you see code and tests evolve. James leads you through the thought process and decisions made each step of the way. You'll learn techniques for test-driving code right next to the hardware, and you'll learn design principles and how to apply them to C to keep your code clean and flexible. To run the examples in this book, you will need a C/C++ development environment on your machine, and the GNU GCC tool chain or Microsoft Visual Studio for C++ (some project conversion may be needed).
Machine Learning with R
Brett Lantz - 2014
This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.
Head First JavaScript Programming
Eric Freeman - 2014
Want to understand that code you've been copying and pasting into your web pages? And do it in a way that won't put you to sleep? Then Head First JavaScript Programming is for you. Learning a programming language is no easy task, but Head First JavaScript Programming uses puzzles, visuals, mysteries, interviews, and fun examples to make learning JavaScript fast, fun, and effective. But don't be fooled; you might be having a good time while you're learning JavaScript, but you're still learning all the serious stuff. Like how functions and objects work, what a callback is, how to interact with the web page using the Document Object Model, how to use arrays, and even what a closure is. JavaScript is one of the most popular languages in the world, and it's only getting more popular as the Web continues to grow. Learn JavaScript the Head First way, and get in on all the action.
The R Book
Michael J. Crawley - 2007
The R language is recognised as one of the most powerful and flexible statistical software packages, and it enables the user to apply many statistical techniques that would be impossible without such software to help implement such large data sets.
API Design for C++
Martin Reddy - 1996
It is the only book that teaches the strategies of C++ API development, including interface design, versioning, scripting, and plug-in extensibility. Drawing from the author's experience on large scale, collaborative software projects, the text offers practical techniques of API design that produce robust code for the long term. It presents patterns and practices that provide real value to individual developers as well as organizations.API Design for C++ explores often overlooked issues, both technical and non-technical, contributing to successful design decisions that product high quality, robust, and long-lived APIs. It focuses on various API styles and patterns that will allow you to produce elegant and durable libraries. A discussion on testing strategies concentrates on automated API testing techniques rather than attempting to include end-user application testing techniques such as GUI testing, system testing, or manual testing. Each concept is illustrated with extensive C++ code examples, and fully functional examples and working source code for experimentation are available online.This book will be helpful to new programmers who understand the fundamentals of C++ and who want to advance their design skills, as well as to senior engineers and software architects seeking to gain new expertise to complement their existing talents. Three specific groups of readers are targeted: practicing software engineers and architects, technical managers, and students and educators.
Introduction to Probability
Dimitri P. Bertsekas - 2002
This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.
Blood, Sweat, and Pixels: The Triumphant, Turbulent Stories Behind How Video Games Are Made
Jason Schreier - 2017
In Blood, Sweat, and Pixels, Jason Schreier takes readers on a fascinating odyssey behind the scenes of video game development, where the creator may be a team of 600 overworked underdogs or a solitary geek genius. Exploring the artistic challenges, technical impossibilities, marketplace demands, and Donkey Kong-sized monkey wrenches thrown into the works by corporate, Blood, Sweat, and Pixels reveals how bringing any game to completion is more than Sisyphean—it's nothing short of miraculous.Taking some of the most popular, bestselling recent games, Schreier immerses readers in the hellfire of the development process, whether it's RPG studio Bioware's challenge to beat an impossible schedule and overcome countless technical nightmares to build Dragon Age: Inquisition; indie developer Eric Barone's single-handed efforts to grow country-life RPG Stardew Valley from one man's vision into a multi-million-dollar franchise; or Bungie spinning out from their corporate overlords at Microsoft to create Destiny, a brand new universe that they hoped would become as iconic as Star Wars and Lord of the Rings—even as it nearly ripped their studio apart. Documenting the round-the-clock crunches, buggy-eyed burnout, and last-minute saves, Blood, Sweat, and Pixels is a journey through development hell—and ultimately a tribute to the dedicated diehards and unsung heroes who scale mountains of obstacles in their quests to create the best games imaginable.
The Unified Modeling Language User Guide
Grady Booch - 1998
Starting with a conceptual model of the UML, the book progressively applies the UML to a series of increasingly complex modeling problems across a variety of application domains. This example-driven approach helps readers quickly understand and apply the UML. For more advanced developers, the book includes a learning track focused on applying the UML to advanced modeling problems. With The Unified Modeling Language User Guide, readers will: *understand what the UML is, what it is not, and why it is relevant to the development of software-intensive systems *master the vocabulary, rules, and idioms of the UML in order to speak the language effectively *learn how to apply the UML to a number of common modeling problems *see illustrations of the UMLs use interspersed with use cases for specific UML features *gain insight into the UML from the original creators of the UML
The Untold History of Japanese Game Developers: Gold Edition
John Szczepaniak - 2014
Konami's secret games console, the origin of Game Arts and Quintet, unusual events at Telenet, stories on Falcom, politics behind Enix's game programming contests, a tour of the Love-de-Lic and WARP offices (with layout sketches). Every interviewee is asked about unreleased titles. Foreword by GAMESIDE magazine's editor-in-chief, Yusaku Yamamoto. INTERVIEWEES INCLUDE: Hitoshi YONEDA / Tatsuo NOMURA / Katsutoshi EGUCHI / Toru HIDAKA / Roy OZAKI / Kouichi YOTSUI / Masaaki KUKINO / Yoshitaka Murayama / Harry Inaba / Ryukushi07 / Kotaro UCHIKOSHI / ZUN / Yoshiro KIMURA / Kouji YOKOTA / Jun Nagashima / Yuzo KOSHIRO / Masamoto MORITA / Akira TAKIGUCHI / Masakuni MITSUHASHI / Kohei IKEDA / Hiroshi SUZUKI / Tomonori SUGIYAMA / Yutaka ISOKAWA / Yasuhito SAITO / Takaki KOBAYASHI / Keite ABE / Keiji INAFUNE / Makoto GOTO
Introduction to Data Mining
Vipin Kumar - 2005
Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.
Elements of Information Theory
Thomas M. Cover - 1991
Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
Neural Networks, Fuzzy Logic And Genetic Algorithms: Synthesis And Applications
S. Rajasekaran - 2004
The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year postgraduate engineering levels.
Time Series Analysis
James Douglas Hamilton - 1994
This book synthesizes these recent advances and makes them accessible to first-year graduate students. James Hamilton provides the first adequate text-book treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems (including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter) in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results.The book is intended to provide students and researchers with a self-contained survey of time series analysis. It starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers.-- "Journal of Economics"