Einstein for Everyone


Robert L. Piccioni - 2010
    Nor do you need to be a great scientist to appreciate the exciting discoveries and intriguing mysteries of our universe. Dr. Robert piccioni brings the excitement of modern scientific discoveries to general audiences. He makes the key facts and concepts understandable without "dumbing" them down. He presents them in a friendly, conversational manner and includes many personal anecdotes about the people behind the science. With 33 images and over 100 graphics, this book explains the real science behind the headlines and sound bites. Learn all about:our universe: how big? how old? what came before?the big bang, black holes and supernovaequantum mechanics and uncertaintyhow the immense and the minute are connectedwhat is special about general relativityhow mankind can become earth's best friend

Seeing and Believing: How the Telescope Opened Our Eyes and Minds to the Heavens


Richard Panek - 1998
    A concise look at the impact of the advent of the telescope on the way humans view the universe and their place in it focuses on the visionaries, beginning with Galileo, who created and perfected it.

Astronomy: A Beginner's Guide to the Universe


Eric Chaisson - 1995
    Astronomy: A Beginner's Guide to the Universe.

Astrophysics for People in a Hurry


Neil deGrasse Tyson - 2017
    So Tyson brings the universe down to Earth succinctly and clearly, with sparkling wit, in tasty chapters consumable anytime and anywhere in your busy day.

How to Die in Space: A Journey Through Dangerous Astrophysical Phenomena


Paul M. Sutter - 2020
    Through metaphors and straightforward language, it breathes life into astrophysics, unveiling how particles and forces and fields interplay to create the drama in the heavens above us.

What's Eating the Universe?: And Other Cosmic Questions


Paul C.W. Davies - 2021
      In the constellation of Eridanus, there lurks a cosmic mystery: It’s as if something has taken a huge bite out of the universe. But what is the culprit? The hole in the universe is just one of many puzzles keeping cosmologists busy. Supermassive black holes, bubbles of nothingness gobbling up space, monster universes swallowing others—these and many other bizarre ideas are being pursued by scientists. Due to breathtaking progress in astronomy, the history of our universe is now better understood than the history of our own planet. But these advances have uncovered some startling riddles. In this electrifying new book, renowned cosmologist and author Paul Davies lucidly explains what we know about the cosmos and its enigmas, exploring the tantalizing—and sometimes terrifying—possibilities that lie before us. As Davies guides us through the audacious research offering mind-bending solutions to these and other mysteries, he leads us up to the greatest outstanding conundrum of all: Why does the universe even exist in the first place? And how did a system of mindless, purposeless particles manage to bring forth conscious, thinking beings? Filled with wit and wonder, What’s Eating the Universe? is a dazzling tour of cosmic questions, sure to entertain, enchant, and inspire us all.

Black Holes and Warped Spacetime


William J. Kaufmann III - 1979
    They infinitely warp space and time, allowing nothing to escape: not matter, not even light. They are stellar corpses that have crushed themselves into oblivion, seemingly suspending the traditional laws of physics. The Big bang may have peppered the universe with primordial black holes, as small as protons but as massive as mountains. The universe itself may be disappearing into the final black hole. Black holes (BHs) and their warping effect on spacetime are described, beginning with a discussion on stellar evolution that includes white dwarfs, supernovas and neutron stars. The structure of static, rotating, and electrically charged BHs are considered, as well as the general theory of relativity, quantum mechanics, the Einstein-Rosen bridge, and wormholes in spacetime. Attention is also given to gravitational lenses, various space geometries, quasars, Seyfert galaxies, supermassive black holes, the evaporation and particle emission of BHs, and primordial BHs, including their temperature and lifetime. The author's engrossing, non-technical explanations are enhanced by numerous illustrations.

Before the Big Bang


John Gribbin - 2015
    Before the Big Bang, there was a tiny fraction of a second during which a process called inflation expanded a seed much smaller than the nucleus of an atom into a fireball the size of a basketball -- the Big Bang itself. From this fireball, the Universe as we know it developed. The origin of the seed from which the Universe began is not known with certainty, but as John Gribbin explains the most likely explanation is that it was a fluctuation of quantum energy in an eternal sea of cosmic energy. And that means that other seeds must surely have inflated to become other universes, bubbles in the cosmic sea. It is even possible that a collision between our universe and another bubble on the sea of eternity may have left an imprint on the cosmic background radiation, the echo of the Big Bang itself. John Gribbin is an award winning science writer best known for his book In Search of Schrodinger's Cat. He studied astrophysics under Fred Hoyle in Cambridge, and is now a Visiting Fellow in Astronomy at the University of Sussex.

An Introduction to Modern Astrophysics


Bradley W. Carroll - 1995
    Designed for the junior- level astrophysics course, each topic is approached in the context of the major unresolved questions in astrophysics. The core chapters have been designed for a course in stellar structure and evolution, while the extended chapters provide additional coverage of the solar system, galactic structure, dynamics, evolution, and cosmology. * Two versions of this text are available: An Introduction to Modern Stellar Astrophysics, (Chapters 1-17), and An Introduction to Modern Astrophysics, (Chapters 1-28). * Computer programs included with the text allow students to explore the physics of stars and galaxies. * In designing a curriculum, instructors can combine core and extended chapters with the optional advanced sections so as to meet their individual goals. * Up-to-date coverage of current astrophysical discoveries are included. * This text emphasizes computational physics, including computer problems and on-line programs. * This text also includes a selection of over 500 problems. For additional information and computer codes to be used

The Neutrino: Ghost Particle of the Atom


Isaac Asimov - 1969
    

Just Six Numbers: The Deep Forces That Shape the Universe


Martin J. Rees - 1999
    There are deep connections between stars and atoms, between the cosmos and the microworld. Just six numbers, imprinted in the "big bang," determine the essential features of our entire physical world. Moreover, cosmic evolution is astonishingly sensitive to the values of these numbers. If any one of them were "untuned," there could be no stars and no life. This realization offers a radically new perspective on our universe, our place in it, and the nature of physical laws.

How It Began: A Time-Traveler's Guide to the Universe


Chris Impey - 2012
    Because it takes time for light to travel, we see more and more distant regions of the universe as they were in the successively greater past. Impey uses this concept—"look-back time"—to take us on an intergalactic tour that is simultaneously out in space and back in time. Performing a type of cosmic archaeology, Impey brilliantly describes the astronomical clues that scientists have used to solve fascinating mysteries about the origins and development of our universe.The milestones on this journey range from the nearby to the remote: we travel from the Moon, Jupiter, and the black hole at the heart of our galaxy all the way to the first star, the first ray of light, and even the strange, roiling conditions of the infant universe, an intense and volatile environment in which matter was created from pure energy. Impey gives us breathtaking visual descriptions and also explains what each landmark can reveal about the universe and its history. His lucid, wonderfully engaging scientific discussions bring us to the brink of modern cosmology and physics, illuminating such mind-bending concepts as invisible dimensions, timelessness, and multiple universes.A dynamic and unforgettable portrait of the cosmos, How It Began will reward its readers with a deeper understanding of the universe we inhabit as well as a renewed sense of wonder at its beauty and mystery.

A Question of Time: The Ultimate Paradox


Scientific American - 2012
    

Hidden In Plain Sight 2: The Equation of the Universe


Andrew H. Thomas - 2013
    Enjoy a thrilling intergalactic tour as Andrew Thomas redefines the force of gravity and introduces a brave new view of the universe!

Introduction to Special Relativity


Robert Resnick - 1968
    Professor Resnick presents a fundamental and unified development of the subject with unusually clear discussions of the aspects that usually trouble beginners. He includes, for example, a section on the common sense of relativity. His presentation is lively and interspersed with historical, philosophical and special topics (such as the twin paradox) that will arouse and hold the reader's interest. You'll find many unique features that help you grasp the material, such as worked-out examples, summary tables, thought questions and a wealth of excellent problems. The emphasis throughout the book is physical. The experimental background, experimental confirmation of predictions, and the physical interpretation of principles are stressed. The book treats relativistic kinematics, relativistic dynamics, and relativity and electromagnetism and contains special appendices on the geometric representation of space-time and on general relativity. Its organization permits an instructor to vary the length and depth of his treatment and to use the book either with or following classical physics. These features make it an ideal companion for introductory course