Book picks similar to
Gems of Geometry by John Barnes


m-geometry
catalogue
geometry
immediate-math

Practical Algebra: A Self-Teaching Guide


Peter H. Selby - 1974
    Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical, real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio, proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry, and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.

Symbolic Logic And The Game Of Logic


Lewis Carroll - 1958
    Written by the 19th-century mathematician who also gave us "Alive in Wonderland", they are among the most entertaining logical works ever written, and contain some of the most thought-provoking puzzles ever devised.

String, Straightedge, and Shadow: The Story of Geometry


Julia E. Diggins - 1965
    Julia Diggins masterfully recreates the atmosphere of ancient times, when men, using three simple tools, the string, the straightedge, and the shadow, discovered the basic principles and constructions of elementary geometry. Her book reveals how these discoveries related to the early civilizations of Mesopotamia, Egypt, and Greece.The fabric of the story is woven out of archeological and historical records and legends about the major men of mathematics. By reconstructing the events as they might have happened, Diggins enables the attentive reader to easily follow the pattern of reasoning that leads to an ingenious proof of the Pythagorean theorem, an appreciation of the significance of the Golden Mean in art and architecture, and the construction of the five regular solids.Out of print for 34 years, Julia Diggins' classic book is back and is a must-read for middle school students or for parents helping their children through their first geometry course. You will be fascinated with the graphic illustrations and written depiction of how the knowledge and wisdom of so many cultures helped shape our civilization today. This book is popular with teachers and parents who use Jamie York's Making Math Meaningful curriculum books.

All Things Being Equal: Why Math Is the Key to a Better World


John Mighton - 2020
    For two decades, John Mighton has developed strategies for fostering intellectual potential in all children through learning math. Math, Mighton says, provides us with mental tools of incredible power. When we learn math we learn to see patterns, to think logically and systematically, to draw analogies, to perceive risk, to understand cause and effect--among many other critical skills. Yet we tolerate and in fact expect a vast performance gap in math among students, and live in a world where many adults aren't equipped with these crucial tools. This learning gap is unnecessary, dangerous and tragic, he cautions, and it has led us to a problem of intellectual poverty which is apparent everywhere--in fake news, political turmoil, floundering economies, even in erroneous medical diagnoses. In All Things Being Equal, Mighton argues that math study is an ideal starting point to break down social inequality and empower individuals to build a smarter, kinder, more equitable world. Bringing together the latest cognitive research and incremental learning strategies, Mighton goes deep into the classroom and beyond to offer a hopeful--and urgent--vision for a numerate society.

Mathematics of Classical and Quantum Physics


Frederick W. Byron Jr. - 1969
    Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.

Calculus With Analytic Geometry


Ron Larson - 1979
    This was the first calculus text to use computer-generated graphics, to include exercises involving the use of computers and graphing calculators, to be available in an interactive CD-ROM format, to be offered as a complete, online calculus course, and to offer a two-semester Calculus I with Precalculus text. Every edition of the series has made the mastery of traditional calculus skills a priority, while embracing the best features of new technology and, when appropriate, calculus reform ideas. Now, the Eighth Edition is the first calculus program to offer algorithmic homework and testing created in Maple so that answers can be evaluated with complete mathematical accuracy.Two primary objectives guided the authors in writing this book: to develop precise, readable materials for students that clearly define and demonstrate concepts and rules of calculus and to design comprehensive teaching resources for instructors that employ proven pedagogical techniques and saves the instructor time. The Eighth Edition continues to provide an evolving range of conceptual, technological, and creative tools that enable instructors to teach the way they want to teach and students to learn they way they learn best. The explanations, theorems, and definitions have been thoroughly and critically reviewed. Additionally, the exercise sets have been carefully and extensively examined to ensure they cover all calculus topics appropriately. Questions involving skills, writing, critical thinking, problem-solving, applications, and real-data applications are included throughout the text. Exercises are presented in a variety of question formats, including matching, free response, true/false, modeling, and fill-in the blank. The Eduspace online resources have been integrated into a comprehensive learning system that combines numerous dynamic calculus resources with online homework and testing materials. Eduspace with eSolutions combines all the features of Eduspace with an electronic version of the textbook exercises and the complete solutions to the odd-numbered text exercises, providing students with a convenient and comprehensive way to do homework and view the course materials. The Integrated Learning System addresses the changing needs of today's instructors and students. Recognizing that the calculus course is presented in a variety of teaching and learning environments, the program resources are available in print, CD-ROM, and online formats. SMARTHINKING online tutoring brings students real-time, online tutorial support when they need it most.

How Numbers Work: Discover the Strange and Beautiful World of Mathematics (New Scientist Instant Expert)


New Scientist - 2018
    No, hang on, let's make this interesting. Between zero and infinity. Even if you stick to the whole numbers, there are a lot to choose from - an infinite number in fact. Throw in decimal fractions and infinity suddenly gets an awful lot bigger (is that even possible?) And then there are the negative numbers, the imaginary numbers, the irrational numbers like pi which never end. It literally never ends.The world of numbers is indeed strange and beautiful. Among its inhabitants are some really notable characters - pi, e, the "imaginary" number i and the famous golden ratio to name just a few. Prime numbers occupy a special status. Zero is very odd indeed: is it a number, or isn't it?How Numbers Work takes a tour of this mind-blowing but beautiful realm of numbers and the mathematical rules that connect them. Not only that, but take a crash course on the biggest unsolved problems that keep mathematicians up at night, find out about the strange and unexpected ways mathematics influences our everyday lives, and discover the incredible connection between numbers and reality itself. ABOUT THE SERIESNew Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.

Physics, Volume 1


Robert Resnick - 1966
    The Fourth Edition of volumes 1 and 2 is concerned with mechanics and E&M/Optics. New features include: expanded coverage of classic physics topics, substantial increases in the number of in-text examples which reinforce text exposition, the latest pedagogical and technical advances in the field, numerical analysis, computer-generated graphics, computer projects and much more.

Number Theory


George E. Andrews - 1994
    In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simplicity of the proofs for many theorems.Among the topics covered in this accessible, carefully designed introduction are multiplicativity-divisibility, including the fundamental theorem of arithmetic, combinatorial and computational number theory, congruences, arithmetic functions, primitive roots and prime numbers. Later chapters offer lucid treatments of quadratic congruences, additivity (including partition theory) and geometric number theory.Of particular importance in this text is the author's emphasis on the value of numerical examples in number theory and the role of computers in obtaining such examples. Exercises provide opportunities for constructing numerical tables with or without a computer. Students can then derive conjectures from such numerical tables, after which relevant theorems will seem natural and well-motivated..

A Concise History of Mathematics


Dirk Jan Struik - 1948
    Students, researchers, historians, specialists — in short, everyone with an interest in mathematics — will find it engrossing and stimulating.Beginning with the ancient Near East, the author traces the ideas and techniques developed in Egypt, Babylonia, China, and Arabia, looking into such manuscripts as the Egyptian Papyrus Rhind, the Ten Classics of China, and the Siddhantas of India. He considers Greek and Roman developments from their beginnings in Ionian rationalism to the fall of Constantinople; covers medieval European ideas and Renaissance trends; analyzes 17th- and 18th-century contributions; and offers an illuminating exposition of 19th century concepts. Every important figure in mathematical history is dealt with — Euclid, Archimedes, Diophantus, Omar Khayyam, Boethius, Fermat, Pascal, Newton, Leibniz, Fourier, Gauss, Riemann, Cantor, and many others.For this latest edition, Dr. Struik has both revised and updated the existing text, and also added a new chapter on the mathematics of the first half of the 20th century. Concise coverage is given to set theory, the influence of relativity and quantum theory, tensor calculus, the Lebesgue integral, the calculus of variations, and other important ideas and concepts. The book concludes with the beginnings of the computer era and the seminal work of von Neumann, Turing, Wiener, and others."The author's ability as a first-class historian as well as an able mathematician has enabled him to produce a work which is unquestionably one of the best." — Nature Magazine.

A Course of Pure Mathematics


G.H. Hardy - 1908
    Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.

The Geometry of Art and Life


Matila Ghyka - 1946
    The author believes that there are such things as "The Mathematics of Life" and "The Mathematics of Art," and that the two coincide. Using simple mathematical formulas, most as basic as Pythagoras' theorem and requiring only a very limited knowledge of mathematics, Professor Ghyka shows the fascinating relationships between geometry, aesthetics, nature, and the human body.Beginning with ideas from Plato, Pythagoras, Archimedes, Ockham, Kepler, and others, the author explores the outlines of an abstract science of space, which includes a theory of proportions, an examination of "the golden section," a study of regular and semi-regular polyhedral, and the interlinking of these various shapes and forms. He then traces the transmission of this spatial science through the Pythagorean tradition and neo-Pythagorism, Greek, and Gothic canons of proportion, the Kabbala, Masonic traditions and symbols, and modern applications in architecture, painting, and decorative art. When we judge a work of art, according to his formulation, we are making it conform to a pattern whose outline is laid down in simple geometrical figures; and it is the analysis of these figures both in art and nature that forms the core of Professor Ghyka's book. He also shows this geometry at work in living organisms. The ample illustrations and figures give concrete examples of the author's analysis: the Great Pyramid and tomb of Rameses IV, the Parthenon, Renaissance paintings and architecture, the work of Seurat, Le Corbusier, and flowers, shells, marine life, the human face, and much more.For the philosopher, scientist, archaeologist, art historian, biologist, poet, and artist as well as the general reader who wants to understand more about the fascinating properties of numbers and geometry, and their relationship to art and life, this is a thought-provoking book.

Introductory Graph Theory


Gary Chartrand - 1984
    Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics — profusely illustrated — include: Mathematical Models, Elementary Concepts of Graph Theory, Transportation Problems, Connection Problems, Party Problems, Digraphs and Mathematical Models, Games and Puzzles, Graphs and Social Psychology, Planar Graphs and Coloring Problems, and Graphs and Other Mathematics. A useful Appendix covers Sets, Relations, Functions, and Proofs, and a section devoted to exercises — with answers, hints, and solutions — is especially valuable to anyone encountering graph theory for the first time. Undergraduate mathematics students at every level, puzzlists, and mathematical hobbyists will find well-organized coverage of the fundamentals of graph theory in this highly readable and thoroughly enjoyable book.

The History of the Calculus and Its Conceptual Development


Carl B. Boyer - 1959
    Early beginnings in antiquity, medieval contributions, and a century of anticipation lead up to a consideration of Newton and Leibniz, the period of indecison that followed them, and the final rigorous formulation that we know today.

Calculus [with CD]


Howard Anton - 1992
    New co-authors--Irl Bivens and Stephen Davis--from Davidson College; both distinguished educators and writers.* More emphasis on graphing calculators in exercises and examples, including CAS capabilities of graphing calculators.* More problems using tabular data and more emphasis on mathematical modeling.