Proofs and Refutations: The Logic of Mathematical Discovery


Imre Lakatos - 1976
    Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.

Abstract Algebra


I.N. Herstein - 1986
    Providing a concise introduction to abstract algebra, this work unfolds some of the fundamental systems with the aim of reaching applicable, significant results.

Mathematical Analysis


S.C. Malik - 1992
    This book discusses real sequences and series, continuity, functions of several variables, elementary and implicit functions, Riemann and Riemann-Stieltjes integrals, and Lebesgue integrals.

Secrets of Mental Math: The Mathemagician's Guide to Lightning Calculation and Amazing Math Tricks


Arthur T. Benjamin - 1993
    Get ready to amaze your friends—and yourself—with incredible calculations you never thought you could master, as renowned “mathemagician” Arthur Benjamin shares his techniques for lightning-quick calculations and amazing number tricks. This book will teach you to do math in your head faster than you ever thought possible, dramatically improve your memory for numbers, and—maybe for the first time—make mathematics fun.Yes, even you can learn to do seemingly complex equations in your head; all you need to learn are a few tricks. You’ll be able to quickly multiply and divide triple digits, compute with fractions, and determine squares, cubes, and roots without blinking an eye. No matter what your age or current math ability, Secrets of Mental Math will allow you to perform fantastic feats of the mind effortlessly. This is the math they never taught you in school.Also available as an eBook

Practical Algebra: A Self-Teaching Guide


Peter H. Selby - 1974
    Practical Algebra is an easy andfun-to-use workout program that quickly puts you in command of allthe basic concepts and tools of algebra. With the aid of practical, real-life examples and applications, you'll learn: * The basic approach and application of algebra to problemsolving * The number system (in a much broader way than you have known itfrom arithmetic) * Monomials and polynomials; factoring algebraic expressions; howto handle algebraic fractions; exponents, roots, and radicals;linear and fractional equations * Functions and graphs; quadratic equations; inequalities; ratio, proportion, and variation; how to solve word problems, andmore Authors Peter Selby and Steve Slavin emphasize practical algebrathroughout by providing you with techniques for solving problems ina wide range of disciplines--from engineering, biology, chemistry, and the physical sciences, to psychology and even sociology andbusiness administration. Step by step, Practical Algebra shows youhow to solve algebraic problems in each of these areas, then allowsyou to tackle similar problems on your own, at your own pace.Self-tests are provided at the end of each chapter so you canmeasure your mastery.

Love and Math: The Heart of Hidden Reality


Edward Frenkel - 2013
    In this heartfelt and passionate book, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space.Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man’s journey learning and living it. Having braved a discriminatory educational system to become one of the twenty-first century’s leading mathematicians, Frenkel now works on one of the biggest ideas to come out of math in the last 50 years: the Langlands Program. Considered by many to be a Grand Unified Theory of mathematics, the Langlands Program enables researchers to translate findings from one field to another so that they can solve problems, such as Fermat’s last theorem, that had seemed intractable before.At its core, Love and Math is a story about accessing a new way of thinking, which can enrich our lives and empower us to better understand the world and our place in it. It is an invitation to discover the magic hidden universe of mathematics.

How Big Is a Foot?


Rolf Myller - 1962
    The Queen has everything, everything except a bed. The trouble is that no one in the Kingdom knows the answer to a very important question: How Big is a Bed? because beds at the time had not yet been invented. The Queen's birthday is only a few days away. How can they figure out what size the bed should be?

Math Curse


Jon Scieszka - 1995
    Is there enough time? You have 3 shirts and 2 pairs of pants. Can you make 1 good outfit? Then you start to wonder: Why does everything have to be such a problem? Why do 2 apples always have to be added to 5 oranges? Why do 4 kids always have to divide 12 marbles? Why can't you just keep 10 cookies without someone taking 3 away? Why? Because you're the victim of a Math Curse. That's why. But don't despair. This is one girl's story of how that curse can be broken.

Intentional Talk: How to Structure and Lead Productive Mathematical Discussions


Elham Kazemi - 2014
    In Intentional Talk: How to Structure and Lead Productive Mathematical Discussions , authors Elham Kazemi and Allison Hintz provide teachers with a framework for planning and facilitating purposeful math talks that move group discussions to the next level while achieving a mathematical goal.Through detailed vignettes from both primary and upper elementary classrooms, the authors provide a window into how teachers lead discussions and make important pedagogical decisions along the way. By creating equitable opportunities to share ideas, teachers can orient students to one another while enforcing that all students are sense makers and their ideas are valued. They examine students’ roles as both listeners and talkers, offering numerous strategies for improving student participation. Intentional Talk includes a collection of lesson planning templates in the appendix to help teachers apply the right structure to discussions in their own classrooms.

Pure Mathematics: A First Course


J.K. Backhouse - 1974
    This well-established two-book course is designed for class teaching and private study leading to GCSE examinations in mathematics and further Mathematics at A Level.

Math with Bad Drawings


Ben Orlin - 2018
     In MATH WITH BAD DRAWINGS, Ben Orlin answers math's three big questions: Why do I need to learn this? When am I ever going to use it? Why is it so hard? The answers come in various forms-cartoons, drawings, jokes, and the stories and insights of an empathetic teacher who believes that math should belong to everyone.Eschewing the tired old curriculum that begins in the wading pool of addition and subtraction and progresses to the shark infested waters of calculus (AKA the Great Weed Out Course), Orlin instead shows us how to think like a mathematician by teaching us a new game of Tic-Tac-Toe, how to understand an economic crisis by rolling a pair of dice, and the mathematical reason why you should never buy a second lottery ticket. Every example in the book is illustrated with his trademark "bad drawings," which convey both his humor and his message with perfect pitch and clarity. Organized by unconventional but compelling topics such as "Statistics: The Fine Art of Honest Lying," "Design: The Geometry of Stuff That Works," and "Probability: The Mathematics of Maybe," MATH WITH BAD DRAWINGS is a perfect read for fans of illustrated popular science.

Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills


Paul J. Nahin - 2006
    Dr. Euler's Fabulous Formula shares the fascinating story of this groundbreaking formula--long regarded as the gold standard for mathematical beauty--and shows why it still lies at the heart of complex number theory. This book is the sequel to Paul Nahin's An Imaginary Tale: The Story of I [the square root of -1], which chronicled the events leading up to the discovery of one of mathematics' most elusive numbers, the square root of minus one. Unlike the earlier book, which devoted a significant amount of space to the historical development of complex numbers, Dr. Euler begins with discussions of many sophisticated applications of complex numbers in pure and applied mathematics, and to electronic technology. The topics covered span a huge range, from a never-before-told tale of an encounter between the famous mathematician G. H. Hardy and the physicist Arthur Schuster, to a discussion of the theoretical basis for single-sideband AM radio, to the design of chase-and-escape problems. The book is accessible to any reader with the equivalent of the first two years of college mathematics (calculus and differential equations), and it promises to inspire new applications for years to come. Or as Nahin writes in the book's preface: To mathematicians ten thousand years hence, Euler's formula will still be beautiful and stunning and untarnished by time.

Conned Again, Watson: Cautionary Tales Of Logic, Math, And Probability


Colin Bruce - 2000
    In these cautionary tales of greedy gamblers, reckless businessmen, and ruthless con men, Sherlock Holmes uses his deep understanding of probability, statistics, decision theory, and game theory to solve crimes and protect the innocent. But it's not just the characters in these well-crafted stories that are deceived by statistics or fall prey to gambling fallacies. We all suffer from the results of poor decisions. In this illuminating collection, Bruce entertains while teaching us to avoid similar blunders. From "The Execution of Andrews" to "The Case of the Gambling Nobleman," there has never been a more exciting way to learn when to take a calculated risk-and how to spot a scam.

How the Brain Learns Mathematics


David A. Sousa - 2007
    Sousa discusses the cognitive mechanisms for learning mathematics and the environmental and developmental factors that contribute to mathematics difficulties. This award-winning text examines:Children's innate number sense and how the brain develops an understanding of number relationships Rationales for modifying lessons to meet the developmental learning stages of young children, preadolescents, and adolescents How to plan lessons in PreK-12 mathematics Implications of current research for planning mathematics lessons, including discoveries about memory systems and lesson timing Methods to help elementary and secondary school teachers detect mathematics difficulties Clear connections to the NCTM standards and curriculum focal points

Trigonometry For Dummies


Mary Jane Sterling - 2005
    It also explains the "why" of trigonometry, using real-world examples that illustrate the value of trigonometry in a variety of careers. Mary Jane Sterling (Peoria, IL) has taught mathematics at Bradley University in Peoria for more than 20 years. She is also the author of the highly successful Algebra For Dummies (0-7645-5325-9).