Quantum Mechanics


Jim Al-Khalili - 2017
    You'll discover how the sun shines, why light is both a wave and a particle, the certainty of the Uncertainty Principle, Schrodinger's Cat, Einstein's spooky action, how to build a quantum computer, and why quantum mechanics drives even its experts completely crazy. 'Jim Al-Khalili has done an admirable job of condensing the ideas of quantum physics from Max Planck to the possibilities of quantum computers into brisk, straightforward English' The Times

From Shadow Party to Shadow Government: George Soros and the Effort to Radically Change America


John Perazzo - 2011
    Since David Horowitz wrote “The Shadow Party” in 2007, there has been a major breakthrough in the progression of Soros’ plan to racially change American institutions – he has succeeded in subverting and taking over the Democratic Party itself. Though Soros has carefully hidden his goals under the cloak of his philanthropy, Horowitz and John Perazzo expose Soros’ radical agenda in this booklet and show how his philanthropies actually work to advance his leftwing causes. Understanding the Soros agenda is critical for understanding and defeating the Obama agenda, because they have, in effect, become one in the same.

Nikola Tesla: A Captivating Guide to the Life of a Genius Inventor


Captivating History - 2017
    His claim that “harnessing the forces of nature was the only worthwhile scientific endeavor" both impressed and enraged the scientific community. Eventually, his peers could no longer dismiss his eccentricities and began to view him as a crackpot — a potentially dangerous one. Although Tesla’s work was a major factor in the success of the second Industrial Revolution, he died alone, impoverished, and largely shunned by the scientific community that once hailed him a genius. Beset by visions, without a wife or children, Nikola Tesla’s brilliant mind changed the world, even though at the time of his death he passed unnoticed into obscurity. Some of the topics covered in this book include: Childhood Education and Early Career Patents and Politics The Eccentric Genius Tesla’s Coil and the Niagara Contract Influential Friends and the Lure of Flight The Wardenclyffe Tower 1914 and Beyond And much more! Scroll to the top and select the "BUY NOW" button for instant download

Mathematics of Classical and Quantum Physics


Frederick W. Byron Jr. - 1969
    Organized around the central concept of a vector space, the book includes numerous physical applications in the body of the text as well as many problems of a physical nature. It is also one of the purposes of this book to introduce the physicist to the language and style of mathematics as well as the content of those particular subjects with contemporary relevance in physics.Chapters 1 and 2 are devoted to the mathematics of classical physics. Chapters 3, 4 and 5 — the backbone of the book — cover the theory of vector spaces. Chapter 6 covers analytic function theory. In chapters 7, 8, and 9 the authors take up several important techniques of theoretical physics — the Green's function method of solving differential and partial differential equations, and the theory of integral equations. Chapter 10 introduces the theory of groups. The authors have included a large selection of problems at the end of each chapter, some illustrating or extending mathematical points, others stressing physical application of techniques developed in the text.Essentially self-contained, the book assumes only the standard undergraduate preparation in physics and mathematics, i.e. intermediate mechanics, electricity and magnetism, introductory quantum mechanics, advanced calculus and differential equations. The text may be easily adapted for a one-semester course at the graduate or advanced undergraduate level.

Quantum Physics: What Everyone Needs to Know®


Michael G. Raymer - 2017
    However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe.However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.

How to Change Your Mind: What the New Science of Psychedelics


Zhivko - 2018
    

Thermodynamics


Enrico Fermi - 1956
    Based on a course of lectures delivered by the author at Columbia University, the text is elementary in treatment and remarkable for its clarity and organization. Although it is assumed that the reader is familiar with the fundamental facts of thermometry and calorimetry, no advanced mathematics beyond calculus is assumed.Partial contents: thermodynamic systems, the first law of thermodynamics (application, adiabatic transformations), the second law of thermodynamics (Carnot cycle, absolute thermodynamic temperature, thermal engines), the entropy (properties of cycles, entropy of a system whose states can be represented on a (V, p) diagram, Clapeyron and Van der Waals equations), thermodynamic potentials (free energy, thermodynamic potential at constant pressure, the phase rule, thermodynamics of the reversible electric cell), gaseous reactions (chemical equilibria in gases, Van't Hoff reaction box, another proof of the equation of gaseous equilibria, principle of Le Chatelier), the thermodynamics of dilute solutions (osmotic pressure, chemical equilibria in solutions, the distribution of a solute between 2 phases vapor pressure, boiling and freezing points), the entropy constant (Nernst's theorem, thermal ionization of a gas, thermionic effect, etc.).

Pathology of Lying, accusation, and swindling: a study in forensic psychology


Mary Tenney Healy - 2007
    

Bohr And Quantum Theory


Paul Strathern - 1997
    His work won him the Nobel Prize in 1922 and his ideas continue to propel physics towards new discoveries. But what is quantum theory? Most of us do not understand even the basics of one of the most significant scientific advances ever made, opening up a whole new field in science, whose ambiguities still challenge scientists around the world.Bohr and Quantum Theory offers an accessible and absorbing account of the man who was both a part of The Manhattan Project but also an advocate of peace.He held the key to understanding such intricate realities as black holes and nuclear energy. Bohr's Big Idea explains complex and crucial ideas in a clear and engaging way, placing quantum theory in the context of a man's life, work and time and examining its important implications for our future.The Big Idea series is a fascinating look at the greatest advances in our scientific history, and at the men and women who made these fundamental breakthroughs.

Numerical Methods for Scientists and Engineers


Richard Hamming - 1973
    Book is unique in its emphasis on the frequency approach and its use in the solution of problems. Contents include: Fundamentals and Algorithms; Polynomial Approximation — Classical Theory; Fourier Approximation — Modern Theory; and Exponential Approximation.

How to Build a Brain and 34 Other Really Interesting Uses of Maths


Richard Elwes - 2010
    You'll find out how to unknot your DNA, how to count like a supercomputer and how to become famous for solving mathematics' most challenging problem.

Algebra II For Dummies


Mary Jane Sterling - 2004
    To understand algebra is to possess the power to grow your skills and knowledge so you can ace your courses and possibly pursue further study in math. Algebra II For Dummies is the fun and easy way to get a handle on this subject and solve even the trickiest algebra problems. This friendly guide shows you how to get up to speed on exponential functions, laws of logarithms, conic sections, matrices, and other advanced algebra concepts. In no time you'll have the tools you need to:Interpret quadratic functions Find the roots of a polynomial Reason with rational functions Expose exponential and logarithmic functions Cut up conic sections Solve linear and non linear systems of equations Equate inequalities Simplifyy complex numbers Make moves with matrices Sort out sequences and sets This straightforward guide offers plenty of multiplication tricks that only math teachers know. It also profiles special types of numbers, making it easy for you to categorize them and solve any problems without breaking a sweat. When it comes to understanding and working out algebraic equations, Algebra II For Dummies is all you need to succeed!

Teach Yourself Electricity and Electronics (Teach Yourself)


Stan Gibilisco - 1993
    Targeted at the novice market, this self-instruction guide to electronics and electricity has been fully updated to include the latest emerging technologies, including wireless communications, computers and the Internet.

Fundamentals of Engineering Electromagnetics


David K. Cheng - 1992
    It has been developed in response to the need for a text that supports the mastery of this difficult subject. Therefore, in addition to presenting electromagnetics in a concise and logical manner, the text includes end-of-section review questions, worked examples, boxed remarks that alert students to key ideas and tricky points, margin notes, and point-by-point chapter summaries. Examples and applications invite students to solve problems and build their knowledge of electromagnetics. Application topics include: electric motors, transmission lines, waveguides, antenna arrays and radar systems.

Dialogues on Mathematics


Alfréd Rényi - 1967