Book picks similar to
Philosophy of Logics by Susan Haack


philosophy
logic
non-fiction
philosophy-of-logic

Philosophy of Mathematics: Selected Readings


Paul Benacerraf - 1983
    In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Godel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.

Remarks on the Foundations of Mathematics


Ludwig Wittgenstein - 1956
    It was his feeling that a proper analysis of the use of language would clarify concepts and lead to the solution of (what seem to be) philosophical problems.Sometimes, Wittgenstein's expository method is pre-Socratic: a flow of disconnected statements, not unlike Heraclitean fragments, that range from clear aphorisms to cryptic oracles. Elsewhere, there are brief Socratic dialogues with imaginary persons, opponents of equally severe seriousness, representatives of the other half of Wittgenstein strove for total clarity of language as a means of solving philosophical problems, but some of his most meaningful statements here are expressed suggestively, subjectively, poetically.

From a Logical Point of View: Nine Logico-Philosophical Essays


Willard Van Orman Quine - 1953
    At the same time adjacent portions of philosophy and logic are discussed. To the existence of what objects may a given scientific theory be said to be committed? And what considerations may suitably guide us in accepting or revising such ontological commitments? These are among the questions dealt with in this book, particular attention being devoted to the role of abstract entities in mathematics. There is speculation on the mechanism whereby objects of one sort or another come to be posited a process in which the notion of identity plays an important part."This volume of essays has a unity and bears throughout the imprint of Quine's powerful and original mind. It is written with the felicity in the choice of words which makes everything that Quine writes a pleasure to read, and which ranks him among the best contemporary writers on abstract subjects." (Cambridge Review)"Professor Quine's challenging and original views are here for the first time presented as a unity. The chief merit of the book is the heart-searching from which it arose and to which it will give rise. In vigour, conciseness, and clarity, it is characteristic of its author." (Oxford Magazine)

Introduction to Logic


Harry J. Gensler - 2001
    Harry Gensler engages students with the basics of logic through practical examples and important arguments both in the history of philosophy and from contemporary philosophy. Using simple and manageable methods for testing arguments, students are led step-by-step to master the complexities of logic.The companion LogiCola instructional program and various teaching aids (including a teacher's manual) are available from the book's website: www.routledge.com/textbooks/gensler_l...

An Introduction to Non-Classical Logic


Graham Priest - 2001
    Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.

Proofs and Refutations: The Logic of Mathematical Discovery


Imre Lakatos - 1976
    Much of the book takes the form of a discussion between a teacher and his students. They propose various solutions to some mathematical problems and investigate the strengths and weaknesses of these solutions. Their discussion (which mirrors certain real developments in the history of mathematics) raises some philosophical problems and some problems about the nature of mathematical discovery or creativity. Imre Lakatos is concerned throughout to combat the classical picture of mathematical development as a steady accumulation of established truths. He shows that mathematics grows instead through a richer, more dramatic process of the successive improvement of creative hypotheses by attempts to 'prove' them and by criticism of these attempts: the logic of proofs and refutations.

Introduction to Mathematical Philosophy


Bertrand Russell - 1918
    In it, Russell offers a nontechnical, undogmatic account of his philosophical criticism as it relates to arithmetic and logic. Rather than an exhaustive treatment, however, the influential philosopher and mathematician focuses on certain issues of mathematical logic that, to his mind, invalidated much traditional and contemporary philosophy.In dealing with such topics as number, order, relations, limits and continuity, propositional functions, descriptions, and classes, Russell writes in a clear, accessible manner, requiring neither a knowledge of mathematics nor an aptitude for mathematical symbolism. The result is a thought-provoking excursion into the fascinating realm where mathematics and philosophy meet — a philosophical classic that will be welcomed by any thinking person interested in this crucial area of modern thought.

The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number


Gottlob Frege - 1884
    The book represents the first philosophically sound discussion of the concept of number in Western civilization. It profoundly influenced developments in the philosophy of mathematics and in general ontology.

Introduction to Logic: and to the Methodology of Deductive Sciences


Alfred Tarski - 1993
    According to the author, these trends sought to create a unified conceptual apparatus as a common basis for the whole of human knowledge.Because these new developments in logical thought tended to perfect and sharpen the deductive method, an indispensable tool in many fields for deriving conclusions from accepted assumptions, the author decided to widen the scope of the work. In subsequent editions he revised the book to make it also a text on which to base an elementary college course in logic and the methodology of deductive sciences. It is this revised edition that is reprinted here.Part One deals with elements of logic and the deductive method, including the use of variables, sentential calculus, theory of identity, theory of classes, theory of relations and the deductive method. The Second Part covers applications of logic and methodology in constructing mathematical theories, including laws of order for numbers, laws of addition and subtraction, methodological considerations on the constructed theory, foundations of arithmetic of real numbers, and more. The author has provided numerous exercises to help students assimilate the material, which not only provides a stimulating and thought-provoking introduction to the fundamentals of logical thought, but is the perfect adjunct to courses in logic and the foundation of mathematics.

An Introduction to Probability and Inductive Logic


Ian Hacking - 2001
    The book has been designed to offer maximal accessibility to the widest range of students (not only those majoring in philosophy) and assumes no formal training in elementary symbolic logic. It offers a comprehensive course covering all basic definitions of induction and probability, and considers such topics as decision theory, Bayesianism, frequency ideas, and the philosophical problem of induction. The key features of the book are: * A lively and vigorous prose style* Lucid and systematic organization and presentation of the ideas* Many practical applications* A rich supply of exercises drawing on examples from such fields as psychology, ecology, economics, bioethics, engineering, and political science* Numerous brief historical accounts of how fundamental ideas of probability and induction developed.* A full bibliography of further reading Although designed primarily for courses in philosophy, the book could certainly be read and enjoyed by those in the social sciences (particularly psychology, economics, political science and sociology) or medical sciences such as epidemiology seeking a reader-friendly account of the basic ideas of probability and induction. Ian Hacking is University Professor, University of Toronto. He is Fellow of the Royal Society of Canada, Fellow of the British Academy, and Fellow of the American Academy of Arts and Sciences. he is author of many books including five previous books with Cambridge (The Logic of Statistical Inference, Why Does Language Matter to Philosophy?, The Emergence of Probability, Representing and Intervening, and The Taming of Chance).

Paradoxes


R.M. Sainsbury - 1988
    Unlike party puzzles or brain teasers, many paradoxes are serious in that they raise serious philosophical problems, and are associated with crises of thought and revolutionary advances. To grapple with them is not merely to engage in an intellectual game, but to come to grips with issues of real import. The second, revised edition of this intriguing book expands and updates the text to take account of new work on the subject. It provides a valuable and accessible introduction to a range of paradoxes and their possible solutions, with questions designed to engage the reader with the arguments and full bibliographical references to both classic and current literature on the topic.

Five Thousand B.C. and Other Philosophical Fantasies


Raymond M. Smullyan - 1983
    ASIN: 0312295170

Philosophical Devices: Proofs, Probabilities, Possibilities, and Sets


David Papineau - 2012
    Notions like denumerability, modal scope distinction, Bayesian conditionalization, and logical completeness are usually only elucidated deep within difficultspecialist texts. By offering simple explanations that by-pass much irrelevant and boring detail, Philosophical Devices is able to cover a wealth of material that is normally only available to specialists.The book contains four sections, each of three chapters. The first section is about sets and numbers, starting with the membership relation and ending with the generalized continuum hypothesis. The second is about analyticity, a prioricity, and necessity. The third is about probability, outliningthe difference between objective and subjective probability and exploring aspects of conditionalization and correlation. The fourth deals with metalogic, focusing on the contrast between syntax and semantics, and finishing with a sketch of Godel's theorem.Philosophical Devices will be useful for university students who have got past the foothills of philosophy and are starting to read more widely, but it does not assume any prior expertise. All the issues discussed are intrinsically interesting, and often downright fascinating. It can be read withpleasure and profit by anybody who is curious about the technical infrastructure of contemporary philosophy.

An Investigation of the Laws of Thought


George Boole - 1854
    A timeless introduction to the field and a landmark in symbolic logic, showing that classical logic can be treated algebraically.

Modern Philosophy: An Introduction and Survey


Roger Scruton - 1994
    Rather than producing a survey of an academic discipline, Scruton reclaims philosophy for worldly concerns.