Book picks similar to
We Need to Talk About Kelvin: What everyday things tell us about the universe by Marcus Chown
science
non-fiction
physics
popular-science
The Structure of Scientific Revolutions
Thomas S. Kuhn - 1962
The Structure of Scientific Revolutions is that kind of book. When it was first published in 1962, it was a landmark event in the history and philosophy of science. Fifty years later, it still has many lessons to teach. With The Structure of Scientific Revolutions, Kuhn challenged long-standing linear notions of scientific progress, arguing that transformative ideas don’t arise from the day-to-day, gradual process of experimentation and data accumulation but that the revolutions in science, those breakthrough moments that disrupt accepted thinking and offer unanticipated ideas, occur outside of “normal science,” as he called it. Though Kuhn was writing when physics ruled the sciences, his ideas on how scientific revolutions bring order to the anomalies that amass over time in research experiments are still instructive in our biotech age. This new edition of Kuhn’s essential work in the history of science includes an insightful introduction by Ian Hacking, which clarifies terms popularized by Kuhn, including paradigm and incommensurability, and applies Kuhn’s ideas to the science of today. Usefully keyed to the separate sections of the book, Hacking’s introduction provides important background information as well as a contemporary context. Newly designed, with an expanded index, this edition will be eagerly welcomed by the next generation of readers seeking to understand the history of our perspectives on science.
The Case for Mars
Robert Zubrin - 1996
The planet most like ours, it has still been thought impossible to reach, let alone explore and inhabit.Now with the advent of a revolutionary new plan, all this has changed. leading space exploration authority Robert Zubrin has crafted a daring new blueprint, Mars Direct, presented here with illustrations, photographs, and engaging anecdotes.The Case for Mars is not a vision for the far future or one that will cost us impossible billions. It explains step-by-step how we can use present-day technology to send humans to Mars within ten years; actually produce fuel and oxygen on the planet's surface with Martian natural resources; how we can build bases and settlements; and how we can one day "terraform" Mars--a process that can alter the atmosphere of planets and pave the way for sustainable life.
The Wasp That Brainwashed the Caterpillar: Evolution's Most Unbelievable Solutions to Life's Biggest Problems
Matt Simon - 2016
To find a meal, the female bolas spider releases pheromones that mimic a female moth, luring male moths into her sticky lasso web. The Glyptapanteles wasp injects a caterpillar with her young, which feed on the victim, erupt out of it, then mind-control the poor (and somehow still living) schmuck into protecting them from predators.These are among the curious critters of The Wasp That Brainwashed the Caterpillar, a jaunt through evolution’s most unbelievable, most ingenious solutions to the problems of everyday life, from trying to get laid to finding food. Join Wired science writer Matt Simon as he introduces you to the creatures that have it figured out, the ones that joust with their mustaches or choke sharks to death with snot, all in a wild struggle to survive and, of course, find true love.
Ignorance: How it drives science
Stuart Firestein - 2012
And it is ignorance--not knowledge--that is the true engine of science.Most of us have a false impression of science as a surefire, deliberate, step-by-step method for finding things out and getting things done. In fact, says Firestein, more often than not, science is like looking for a black cat in a dark room, and there may not be a cat in the room. The processis more hit-or-miss than you might imagine, with much stumbling and groping after phantoms. But it is exactly this not knowing, this puzzling over thorny questions or inexplicable data, that gets researchers into the lab early and keeps them there late, the thing that propels them, the verydriving force of science. Firestein shows how scientists use ignorance to program their work, to identify what should be done, what the next steps are, and where they should concentrate their energies. And he includes a catalog of how scientists use ignorance, consciously or unconsciously--aremarkable range of approaches that includes looking for connections to other research, revisiting apparently settled questions, using small questions to get at big ones, and tackling a problem simply out of curiosity. The book concludes with four case histories--in cognitive psychology, theoreticalphysics, astronomy, and neuroscience--that provide a feel for the nuts and bolts of ignorance, the day-to-day battle that goes on in scientific laboratories and in scientific minds with questions that range from the quotidian to the profound.Turning the conventional idea about science on its head, Ignorance opens a new window on the true nature of research. It is a must-read for anyone curious about science.
The Wave Watcher's Companion: From Ocean Waves to Light Waves via Shock Waves, Stadium Waves, and All the Rest of Life's Undulations
Gavin Pretor-Pinney - 2010
Get ready for a global journey like none other-a passionate enthusiast's exploration of waves that begins with a massive surfable cloud and ends with the majestic Pacific ocean, making side trips along the way to reveal the ups and downs of brain waves, radio waves, infrared waves, microwaves, shock waves, light waves, and much more.
Origin Story: A Big History of Everything
David Christian - 2018
But what would it look like to study the whole of history, from the big bang through the present day -- and even into the remote future? How would looking at the full span of time change the way we perceive the universe, the earth, and our very existence?These were the questions David Christian set out to answer when he created the field of "Big History," the most exciting new approach to understanding where we have been, where we are, and where we are going. In Origin Story, Christian takes readers on a wild ride through the entire 13.8 billion years we've come to know as "history." By focusing on defining events (thresholds), major trends, and profound questions about our origins, Christian exposes the hidden threads that tie everything together -- from the creation of the planet to the advent of agriculture, nuclear war, and beyond.With stunning insights into the origin of the universe, the beginning of life, the emergence of humans, and what the future might bring, Origin Story boldly reframes our place in the cosmos.
The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics
Robert Oerter - 2005
The first, which describes the force of gravity, is widely known: Einstein's General Theory of Relativity. But the theory that explains everything else--the Standard Model of Elementary Particles--is virtually unknown among the general public.In The Theory of Almost Everything, Robert Oerter shows how what were once thought to be separate forces of nature were combined into a single theory by some of the most brilliant minds of the twentieth century. Rich with accessible analogies and lucid prose, The Theory of Almost Everything celebrates a heretofore unsung achievement in human knowledge--and reveals the sublime structure that underlies the world as we know it.
Faraday, Maxwell, and the Electromagnetic Field: How Two Men Revolutionized Physics
Nancy Forbes - 2014
This is the story of how these two men - separated in age by forty years - discovered the existence of the electromagnetic field and devised a radically new theory which overturned the strictly mechanical view of the world that had prevailed since Newton's time.The authors, veteran science writers with special expertise in physics and engineering, have created a lively narrative that interweaves rich biographical detail from each man's life with clear explanations of their scientific accomplishments. Faraday was an autodidact, who overcame class prejudice and a lack of mathematical training to become renowned for his acute powers of experimental observation, technological skills, and prodigious scientific imagination. James Clerk Maxwell was highly regarded as one of the most brilliant mathematical physicists of the age. He made an enormous number of advances in his own right. But when he translated Faraday's ideas into mathematical language, thus creating field theory, this unified framework of electricity, magnetism and light became the basis for much of later, 20th-century physics.Faraday's and Maxwell's collaborative efforts gave rise to many of the technological innovations we take for granted today - from electric power generation to television, and much more. Told with panache, warmth, and clarity, this captivating story of their greatest work - in which each played an equal part - and their inspiring lives will bring new appreciation to these giants of science.
Mass: The Quest to Understand Matter from Greek Atoms to Quantum Fields
Jim Baggott - 2017
Whatever it is, we call it matter or material substance. It is solid; it has mass. But what is matter, exactly? We are taught in school that matter is not continuous, but discrete. As a few of the philosophers of ancient Greece once speculated, nearly two and a half thousand years ago, matter comes in 'lumps', and science has relentlessly peeled away successive layers of matter to reveal its ultimate constituents.Surely, we can't keep doing this indefinitely. We imagine that we should eventually run up against some kind of ultimately fundamental, indivisible type of stuff, the building blocks from which everything in the Universe is made. The English physicist Paul Dirac called this 'the dream of philosophers'. But science has discovered that the foundations of our Universe are not as solid or as certain and dependable as we might have once imagined. They are instead built from ghosts and phantoms, of a peculiar quantum kind. And, at some point on this exciting journey of scientific discovery, we lost our grip on the reassuringly familiar concept of mass.How did this happen? How did the answers to our questions become so complicated and so difficult to comprehend? In Mass Jim Baggott explains how we come to find ourselves here, confronted by a very different understanding of the nature of matter, the origin of mass, and its implications for our understanding of the material world. Ranging from the Greek philosophers Leucippus and Democritus, and their theories of atoms and void, to the development of quantum field theory and the discovery of a Higgs boson-like particle, he explores our changing understanding of the nature of matter, and the fundamental related concept of mass.
How to Make a Zombie: The Real Life (and Death) Science of Reanimation and Mind Control
Frank Swain - 2012
It's terrifying! The search for the means to control the bodies and minds of our fellow humans has been underway for millennia, from the sleep-inducing honeycombs that felled Pompey’s army to the Voodoo potions of Haiti. Now, Frank Swain, the force behind Science Punk, has joined the quest, digging up genuine zombie research: • dog heads brought back to life without their bodies • secret agents dosing targets with zombie drugs • parasites that push their hosts to suicide or sex changes • the elixir of life hidden in an eighteenth-century painting This mind-bending and entertaining excavation of incredible science is unlike anything you’ve read before.
The Science Magpie: Fascinating Facts, Stories, Poems, Diagrams, and Jokes Plucked from Science
Simon Flynn - 2012
. . is sure to entertain and surprise."—New ScientistFrom the Large Hadron Collider rap to the sins of Isaac Newton, The Science Magpie is a compelling collection of scientific curiosities. Expand your knowledge as you view the history of the Earth on the face of a clock, tremble at the power of the Richter scale, and learn how to measure the speed of light.Simon Flynn was the publisher at icon Books for many years and is now a qualified science teacher. He has degrees in chemistry and philosophy.
Consilience: The Unity of Knowledge
Edward O. Wilson - 1998
In Consilience (a word that originally meant "jumping together"), Edward O. Wilson renews the Enlightenment's search for a unified theory of knowledge in disciplines that range from physics to biology, the social sciences and the humanities.Using the natural sciences as his model, Wilson forges dramatic links between fields. He explores the chemistry of the mind and the genetic bases of culture. He postulates the biological principles underlying works of art from cave-drawings to Lolita. Presenting the latest findings in prose of wonderful clarity and oratorical eloquence, and synthesizing it into a dazzling whole, Consilience is science in the path-clearing traditions of Newton, Einstein, and Richard Feynman.
Wrinkles in Time
George Smoot - 1993
Dr. George Smoot, a distinguished cosmologist and adventurer whose quest for cosmic knowledge had taken him from the Brazilian rain forest to the South Pole, unveiled his momentous discovery, bringing to light the very nature of the universe. For anyone who has ever looked up at the night sky and wondered, for anyone who has ever longed to pull aside the fabric of the universe for a glimpse of what lies behind it. Wrinkles in Time is the story of Smoot's search to uncover the cosmic seeds of the universe.Wrinkles in Time is the Double Helix of cosmology, an intimate look at the inner world of men and women who ask. "Why are we here?" It tells the story of George Smoot's dogged pursuit of the cosmic wrinkles in the frozen wastes of Antarctica, on mountaintops, in experiments borne aloft aboard high-altitude balloons, U-2 spy planes, and finally a space satellite. Wrinkles in Time presents the hard science behind the structured violence of the big bang theory through breathtakingly clear, lucid images and meaningful comparisons. Scientists and nonscientists alike can follow with rapt attention the story of how, in a fiery creation, wrinkles formed in space ultimately to become stars, galaxies, and even greater delicate structures. Anyone can appreciate the implications of a universe whose end is written in its beginnings - whose course developed according to a kind of cosmic DNA, which guided the universe from simplicity and symmetry to ever-greater complexity and structure. As controversial as it may seem today, Wrinkles in Time reveals truths that, in an earlier century, would have doomed its proclaimers to the fiery stake. For four thousand years some people have accepted the Genesis account of cosmic origin; for most of this century, scientists debated two rival scientific explanations known as the steady state and big bang theories. And now, Wrinkles in Time tells what really happened. The personal story behind astrophysicist George Smoot's incredible discovery of the origin of the cosmos, hailed by Stephen Hawking as "The scientific discovery of the century, if not of all time."
How to Dunk a Doughnut: The Science Of Everyday Life
Len Fisher - 2002
From "the man who put the fun into physics" (International Herald Tribune), an entertaining and accessible look at the science behind our daily activities.
Mapping the Heavens: The Radical Scientific Ideas That Reveal the Cosmos
Priyamvada Natarajan - 2016
If you want to understand the greatest ideas that shaped our current cosmic cartography, read this book.”—Adam G. Riess, Nobel Laureate in Physics, 2011 This book provides a tour of the “greatest hits” of cosmological discoveries—the ideas that reshaped our universe over the past century. The cosmos, once understood as a stagnant place, filled with the ordinary, is now a universe that is expanding at an accelerating pace, propelled by dark energy and structured by dark matter. Priyamvada Natarajan, our guide to these ideas, is someone at the forefront of the research—an astrophysicist who literally creates maps of invisible matter in the universe. She not only explains for a wide audience the science behind these essential ideas but also provides an understanding of how radical scientific theories gain acceptance. The formation and growth of black holes, dark matter halos, the accelerating expansion of the universe, the echo of the big bang, the discovery of exoplanets, and the possibility of other universes—these are some of the puzzling cosmological topics of the early twenty-first century. Natarajan discusses why the acceptance of new ideas about the universe and our place in it has never been linear and always contested even within the scientific community. And she affirms that, shifting and incomplete as science always must be, it offers the best path we have toward making sense of our wondrous, mysterious universe.