Book picks similar to
Electromagnetism for Engineers: An Introductory Course by P. Hammond
an-university-courses
at-work
box3-2-1
egr201
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
Calculus
Michael Spivak - 1967
His aim is to present calculus as the first real encounter with mathematics: it is the place to learn how logical reasoning combined with fundamental concepts can be developed into a rigorous mathematical theory rather than a bunch of tools and techniques learned by rote. Since analysis is a subject students traditionally find difficult to grasp, Spivak provides leisurely explanations, a profusion of examples, a wide range of exercises and plenty of illustrations in an easy-going approach that enlightens difficult concepts and rewards effort. Calculus will continue to be regarded as a modern classic, ideal for honours students and mathematics majors, who seek an alternative to doorstop textbooks on calculus, and the more formidable introductions to real analysis.
Large-Scale C++ Software Design
John S. Lakos - 1996
It is the first C++ book that actually demonstrates how to design large systems, and one of the few books on object-oriented design specifically geared to practical aspects of the C++ programming language. In this book, Lakos explains the process of decomposing large systems into physical (not inheritance) hierarchies of smaller, more manageable components. Such systems with their acyclic physical dependencies are fundamentally easier and more economical to maintain, test, and reuse than tightly interdependent systems. In addition to explaining the motivation for following good physical as well as logical design practices, Lakos provides you with a catalog of specific techniques designed to eliminate cyclic, compile-time, and link-time (physical) dependencies. He then extends these concepts from large to very large systems. The book concludes with a comprehensive top-down approach to the logical design of individual components. Appendices include a valuable design pattern Protocol Hierarchy designed to avoid fat inte
The Human Face of Big Data
Rick Smolan - 2012
Its enable us to sense, measure, and understand aspects of our existence in ways never before possible. The Human Face of Big Data captures, in glorious photographs and moving essays, an extraordinary revolution sweeping, almost invisibly, through business, academia, government, healthcare, and everyday life. It's already enabling us to provide a healthier life for our children. To provide our seniors with independence while keeping them safe. To help us conserve precious resources like water and energy. To alert us to tiny changes in our health, weeks or years before we develop a life-threatening illness. To peer into our own individual genetic makeup. To create new forms of life. And soon, as many predict, to re-engineer our own species. And we've barely scratched the surface . . . Over the past decade, Rick Smolan and Jennifer Erwitt, co-founders of Against All Odds Productions, have produced a series of ambitious global projects in collaboration with hundreds of the world's leading photographers, writers, and graphic designers. Their Day in the Life projects were credited for creating a mass market for large-format illustrated books (rare was the coffee table book without one). Today their projects aim at sparking global conversations about emerging topics ranging from the Internet (24 Hours in Cyberspace), to Microprocessors (One Digital Day), to how the human race is learning to heal itself, (The Power to Heal) to the global water crisis (Blue Planet Run). This year Smolan and Erwitt dispatched photographers and writers in every corner of the globe to explore the world of “Big Data” and to determine if it truly does, as many in the field claim, represent a brand new toolset for humanity, helping address the biggest challenges facing our species. The book features 10 essays by noted writers:Introduction: OCEANS OF DATA by Dan GardnerChapter 1: REFLECTIONS IN A DIGITAL MIRROR by Juan Enriquez, CEO, BiotechnomomyChapter 2: OUR DATA OURSELVES by Kate Green, the EconomistChapter 3: QUANTIFYING MYSELF by AJ Jacobs, EsquireChapter 4: DARK DATA by Marc Goodman, Future Crime InstituteChapter 5: THE SENTIENT SENSOR MESH by Susan Karlin, Fast CompanyChapter 6: TAKING THE PULSE OF THE PLANET by Esther Dyson, EDventureChapter 7: CITIZEN SCIENCE by Gareth Cook, the Boston GlobeChapter 8: A DEMOGRAPH OF ONE by Michael Malone, Forbes magazineChapter 9: THE ART OF DATA by Aaron Koblin, Google Artist in ResidenceChapter 10: DATA DRIVEN by Jonathan Harris, Cowbird The book will also feature stunning info graphics from NIGEL HOLMES.1) GOOGLING GOOGLE: all the ways Google uses Data to help humanity2) DATA IS THE NEW OIL3) THE WORLD ACCORDING TO TWITTER4) AUCTIONING EYEBALLS: The world of Internet advertising5) FACEBOOK: A Billion Friends
Thinking in Systems: A Primer
Donella H. Meadows - 2008
Edited by the Sustainability Institute’s Diana Wright, this essential primer brings systems thinking out of the realm of computers and equations and into the tangible world, showing readers how to develop the systems-thinking skills that thought leaders across the globe consider critical for 21st-century life.Some of the biggest problems facing the world—war, hunger, poverty, and environmental degradation—are essentially system failures. They cannot be solved by fixing one piece in isolation from the others, because even seemingly minor details have enormous power to undermine the best efforts of too-narrow thinking.While readers will learn the conceptual tools and methods of systems thinking, the heart of the book is grander than methodology. Donella Meadows was known as much for nurturing positive outcomes as she was for delving into the science behind global dilemmas. She reminds readers to pay attention to what is important, not just what is quantifiable, to stay humble, and to stay a learner.In a world growing ever more complicated, crowded, and interdependent, Thinking in Systems helps readers avoid confusion and helplessness, the first step toward finding proactive and effective solutions.
Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions
Michael G. Milton - 2009
If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.
Mathematical Methods in the Physical Sciences
Mary L. Boas - 1967
Intuition and computational abilities are stressed. Original material on DE and multiple integrals has been expanded.
No bullshit guide to math and physics
Ivan Savov - 2010
It shouldn't be like that. Learning calculus without mechanics is incredibly boring. Learning mechanics without calculus is missing the point. This textbook integrates both subjects and highlights the profound connections between them.This is the deal. Give me 350 pages of your attention, and I'll teach you everything you need to know about functions, limits, derivatives, integrals, vectors, forces, and accelerations. This book is the only math book you'll need for the first semester of undergraduate studies in science.With concise, jargon-free lessons on topics in math and physics, each section covers one concept at the level required for a first-year university course. Anyone can pick up this book and become proficient in calculus and mechanics, regardless of their mathematical background.Visit http://minireference.com for more details.
Physics, Volume 1
Robert Resnick - 1966
The Fourth Edition of volumes 1 and 2 is concerned with mechanics and E&M/Optics. New features include: expanded coverage of classic physics topics, substantial increases in the number of in-text examples which reinforce text exposition, the latest pedagogical and technical advances in the field, numerical analysis, computer-generated graphics, computer projects and much more.
Linear Algebra and Its Applications [with CD-ROM]
David C. Lay - 1993
Topology
James R. Munkres - 1975
Includes many examples and figures. GENERAL TOPOLOGY. Set Theory and Logic. Topological Spaces and Continuous Functions. Connectedness and Compactness. Countability and Separation Axioms. The Tychonoff Theorem. Metrization Theorems and paracompactness. Complete Metric Spaces and Function Spaces. Baire Spaces and Dimension Theory. ALGEBRAIC TOPOLOGY. The Fundamental Group. Separation Theorems. The Seifert-van Kampen Theorem. Classification of Surfaces. Classification of Covering Spaces. Applications to Group Theory. For anyone needing a basic, thorough, introduction to general and algebraic topology and its applications.
Elements of Programming
Alexander Stepanov - 2009
And then we wonder why software is notorious for being delivered late and full of bugs, while other engineers routinely deliver finished bridges, automobiles, electrical appliances, etc., on time and with only minor defects. This book sets out to redress this imbalance. Members of my advanced development team at Adobe who took the course based on the same material all benefited greatly from the time invested. It may appear as a highly technical text intended only for computer scientists, but it should be required reading for all practicing software engineers." --Martin Newell, Adobe Fellow"The book contains some of the most beautiful code I have ever seen." --Bjarne Stroustrup, Designer of C++"I am happy to see the content of Alex's course, the development and teaching of which I strongly supported as the CTO of Silicon Graphics, now available to all programmers in this elegant little book." --Forest Baskett, General Partner, New Enterprise Associates"Paul's patience and architectural experience helped to organize Alex's mathematical approach into a tightly-structured edifice--an impressive feat!" --Robert W. Taylor, Founder of Xerox PARC CSL and DEC Systems Research Center Elements of Programming provides a different understanding of programming than is presented elsewhere. Its major premise is that practical programming, like other areas of science and engineering, must be based on a solid mathematical foundation. The book shows that algorithms implemented in a real programming language, such as C++, can operate in the most general mathematical setting. For example, the fast exponentiation algorithm is defined to work with any associative operation. Using abstract algorithms leads to efficient, reliable, secure, and economical software.This is not an easy book. Nor is it a compilation of tips and tricks for incremental improvements in your programming skills. The book's value is more fundamental and, ultimately, more critical for insight into programming. To benefit fully, you will need to work through it from beginning to end, reading the code, proving the lemmas, and doing the exercises. When finished, you will see how the application of the deductive method to your programs assures that your system's software components will work together and behave as they must.The book presents a number of algorithms and requirements for types on which they are defined. The code for these descriptions--also available on the Web--is written in a small subset of C++ meant to be accessible to any experienced programmer. This subset is defined in a special language appendix coauthored by Sean Parent and Bjarne Stroustrup.Whether you are a software developer, or any other professional for whom programming is an important activity, or a committed student, you will come to understand what the book's experienced authors have been teaching and demonstrating for years--that mathematics is good for programming, and that theory is good for practice.
Probability, Random Variables and Stochastic Processes with Errata Sheet
Athanasios Papoulis - 2001
Unnikrishna Pillai of Polytechnic University. The book is intended for a senior/graduate level course in probability and is aimed at students in electrical engineering, math, and physics departments. The authors' approach is to develop the subject of probability theory and stochastic processes as a deductive discipline and to illustrate the theory with basic applications of engineering interest. Approximately 1/3 of the text is new material--this material maintains the style and spirit of previous editions. In order to bridge the gap between concepts and applications, a number of additional examples have been added for further clarity, as well as several new topics.
Machine Learning
Tom M. Mitchell - 1986
Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.
Fundamentals of Heat and Mass Transfer
Frank P. Incropera - 1981
Noted for its crystal clear presentation and easy-to-follow problem solving methodology, Incropera and Dewitt's systematic approach to the first law develops reader confidence in using this essential tool for thermal analysis. Readers will learn the meaning of the terminology and physical principles of heat transfer as well as how to use requisite inputs for computing heat transfer rates and/or material temperatures.