Book picks similar to
Fundamentals of Applied Probability Theory by Alvin W. Drake
math
cs
1-after-next-1
after-next
Probability, Random Variables and Stochastic Processes with Errata Sheet
Athanasios Papoulis - 2001
Unnikrishna Pillai of Polytechnic University. The book is intended for a senior/graduate level course in probability and is aimed at students in electrical engineering, math, and physics departments. The authors' approach is to develop the subject of probability theory and stochastic processes as a deductive discipline and to illustrate the theory with basic applications of engineering interest. Approximately 1/3 of the text is new material--this material maintains the style and spirit of previous editions. In order to bridge the gap between concepts and applications, a number of additional examples have been added for further clarity, as well as several new topics.
Multiple View Geometry in Computer Vision
Richard Hartley - 2000
This book covers relevant geometric principles and how to represent objects algebraically so they can be computed and applied. Recent major developments in the theory and practice of scene reconstruction are described in detail in a unified framework. Richard Hartley and Andrew Zisserman provide comprehensive background material and explain how to apply the methods and implement the algorithms. First Edition HB (2000): 0-521-62304-9
Thinking in Bets: Making Smarter Decisions When You Don't Have All the Facts
Annie Duke - 2018
The pass was intercepted and the Seahawks lost. Critics called it the dumbest play in history. But was the call really that bad? Or did Carroll actually make a great move that was ruined by bad luck?Even the best decision doesn't yield the best outcome every time. There's always an element of luck that you can't control, and there is always information that is hidden from view. So the key to long-term success (and avoiding worrying yourself to death) is to think in bets: How sure am I? What are the possible ways things could turn out? What decision has the highest odds of success? Did I land in the unlucky 10% on the strategy that works 90% of the time? Or is my success attributable to dumb luck rather than great decision making?Annie Duke, a former World Series of Poker champion turned business consultant, draws on examples from business, sports, politics, and (of course) poker to share tools anyone can use to embrace uncertainty and make better decisions. For most people, it's difficult to say "I'm not sure" in a world that values and, even, rewards the appearance of certainty. But professional poker players are comfortable with the fact that great decisions don't always lead to great outcomes and bad decisions don't always lead to bad outcomes.By shifting your thinking from a need for certainty to a goal of accurately assessing what you know and what you don't, you'll be less vulnerable to reactive emotions, knee-jerk biases, and destructive habits in your decision making. You'll become more confident, calm, compassionate and successful in the long run.
Problem Solving with Algorithms and Data Structures Using Python
Bradley N. Miller - 2005
It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.
Probabilistic Robotics
Sebastian Thrun - 2005
Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.
The Cartoon Introduction to Statistics
Grady Klein - 2013
Employing an irresistible cast of dragon-riding Vikings, lizard-throwing giants, and feuding aliens, the renowned illustrator Grady Klein and the award-winning statistician Alan Dabney teach you how to collect reliable data, make confident statements based on limited information, and judge the usefulness of polls and the other numbers that you're bombarded with every day. If you want to go beyond the basics, they've created the ultimate resource: "The Math Cave," where they reveal the more advanced formulas and concepts.Timely, authoritative, and hilarious, The Cartoon Introduction to Statistics is an essential guide for anyone who wants to better navigate our data-driven world.
A Field Guide to Lies: Critical Thinking in the Information Age
Daniel J. Levitin - 2016
We are bombarded with more information each day than our brains can process—especially in election season. It's raining bad data, half-truths, and even outright lies. New York Times bestselling author Daniel J. Levitin shows how to recognize misleading announcements, statistics, graphs, and written reports revealing the ways lying weasels can use them.
It's becoming harder to separate the wheat from the digital chaff. How do we distinguish misinformation, pseudo-facts, distortions, and outright lies from reliable information? Levitin groups his field guide into two categories—statistical infomation and faulty arguments—ultimately showing how science is the bedrock of critical thinking. Infoliteracy means understanding that there are hierarchies of source quality and bias that variously distort our information feeds via every media channel, including social media. We may expect newspapers, bloggers, the government, and Wikipedia to be factually and logically correct, but they so often aren't. We need to think critically about the words and numbers we encounter if we want to be successful at work, at play, and in making the most of our lives. This means checking the plausibility and reasoning—not passively accepting information, repeating it, and making decisions based on it. Readers learn to avoid the extremes of passive gullibility and cynical rejection. Levitin's charming, entertaining, accessible guide can help anyone wake up to a whole lot of things that aren't so. And catch some lying weasels in their tracks!
The Idea Factory: Bell Labs and the Great Age of American Innovation
Jon Gertner - 2012
From the transistor to the laser, it s hard to find an aspect of modern life that hasn t been touched by Bell Labs. Why did so many transformative ideas come from Bell Labs? In "The Idea Factory," Jon Gertner traces the origins of some of the twentieth century s most important inventions and delivers a riveting and heretofore untold chapter of American history. At its heart this is a story about the life and work of a small group of brilliant and eccentric men Mervin Kelly, Bill Shockley, Claude Shannon, John Pierce, and Bill Baker who spent their careers at Bell Labs. Their job was to research and develop the future of communications. Small-town boys, childhood hobbyists, oddballs: they give the lie to the idea that Bell Labs was a grim cathedral of top-down command and control.Gertner brings to life the powerful alchemy of the forces at work behind Bell Labs inventions, teasing out the intersections between science, business, and society. He distills the lessons that abide: how to recruit and nurture young talent; how to organize and lead fractious employees; how to find solutions to the most stubbornly vexing problems; how to transform a scientific discovery into a marketable product, then make it even better, cheaper, or both. Today, when the drive to invent has become a mantra, Bell Labs offers us a way to enrich our understanding of the challenges and solutions to technological innovation. Here, after all, was where the foundational ideas on the management of innovation were born. "The Idea Factory" is the story of the origins of modern communications and the beginnings of the information age a deeply human story of extraordinary men who were given extraordinary means time, space, funds, and access to one another and edged the world into a new dimension."
Algorithms
Sanjoy Dasgupta - 2006
Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University
Introduction to Electrodynamics
David J. Griffiths - 1981
This work offers accesible coverage of the fundamentals of electrodynamics, enhanced with with discussion points, examples and exercises.
Convex Optimization
Stephen Boyd - 2004
A comprehensive introduction to the subject, this book shows in detail how such problems can be solved numerically with great efficiency. The focus is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. The text contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance, and economics.
Deep Learning with Python
François Chollet - 2017
It is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more.In particular, Deep learning excels at solving machine perception problems: understanding the content of image data, video data, or sound data. Here's a simple example: say you have a large collection of images, and that you want tags associated with each image, for example, "dog," "cat," etc. Deep learning can allow you to create a system that understands how to map such tags to images, learning only from examples. This system can then be applied to new images, automating the task of photo tagging. A deep learning model only has to be fed examples of a task to start generating useful results on new data.
Elements of Information Theory
Thomas M. Cover - 1991
Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory.All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points.The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated referencesNow current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.
An Introduction to Probability Theory and Its Applications, Volume 1
William Feller - 1968
Beginning with the background and very nature of probability theory, the book then proceeds through sample spaces, combinatorial analysis, fluctuations in coin tossing and random walks, the combination of events, types of distributions, Markov chains, stochastic processes, and more. The book's comprehensive approach provides a complete view of theory along with enlightening examples along the way.
Against the Gods: The Remarkable Story of Risk
Peter L. Bernstein - 1996
Peter Bernstein has written a comprehensive history of man's efforts to understand risk and probability, beginning with early gamblers in ancient Greece, continuing through the 17th-century French mathematicians Pascal and Fermat and up to modern chaos theory. Along the way he demonstrates that understanding risk underlies everything from game theory to bridge-building to winemaking.