Discrete and Combinatorial Mathematics


Ralph P. Grimaldi - 1985
    The text offers a flexible organization, enabling instructors to adapt the book to their particular courses. The book is both complete and careful, and it continues to maintain its emphasis on algorithms and applications. Excellent exercise sets allow students to perfect skills as they practice. This new edition continues to feature numerous computer science applications-making this the ideal text for preparing students for advanced study.

Mindstorms: Children, Computers, And Powerful Ideas


Seymour Papert - 1980
    We have Mindstorms to thank for that. In this book, pioneering computer scientist Seymour Papert uses the invention of LOGO, the first child-friendly programming language, to make the case for the value of teaching children with computers. Papert argues that children are more than capable of mastering computers, and that teaching computational processes like de-bugging in the classroom can change the way we learn everything else. He also shows that schools saturated with technology can actually improve socialization and interaction among students and between students and teachers.

Data Smart: Using Data Science to Transform Information into Insight


John W. Foreman - 2013
    Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

Calculus Made Easy


Silvanus Phillips Thompson - 1910
    With a new introduction, three new chapters, modernized language and methods throughout, and an appendix of challenging and enjoyable practice problems, Calculus Made Easy has been thoroughly updated for the modern reader.

Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, Lego, and Rubber Ducks


Will Kurt - 2019
    But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that.This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples.By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to:- How to measure your own level of uncertainty in a conclusion or belief- Calculate Bayes theorem and understand what it's useful for- Find the posterior, likelihood, and prior to check the accuracy of your conclusions- Calculate distributions to see the range of your data- Compare hypotheses and draw reliable conclusions from themNext time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.

Ubuntu Linux Toolbox: 1000+ Commands for Ubuntu and Debian Power Users


Christopher Negus - 2007
    Try out more than 1,000 commands to find and get software, monitor system health and security, and access network resources. Then, apply the skills you learn from this book to use and administer desktops and servers running Ubuntu, Debian, and KNOPPIX or any other Linux distribution.

Python Programming for Beginners: An Introduction to the Python Computer Language and Computer Programming (Python, Python 3, Python Tutorial)


Jason Cannon - 2014
    There can be so much information available that you can't even decide where to start. Or worse, you start down the path of learning and quickly discover too many concepts, commands, and nuances that aren't explained. This kind of experience is frustrating and leaves you with more questions than answers.Python Programming for Beginners doesn't make any assumptions about your background or knowledge of Python or computer programming. You need no prior knowledge to benefit from this book. You will be guided step by step using a logical and systematic approach. As new concepts, commands, or jargon are encountered they are explained in plain language, making it easy for anyone to understand. Here is what you will learn by reading Python Programming for Beginners: When to use Python 2 and when to use Python 3. How to install Python on Windows, Mac, and Linux. Screenshots included. How to prepare your computer for programming in Python. The various ways to run a Python program on Windows, Mac, and Linux. Suggested text editors and integrated development environments to use when coding in Python. How to work with various data types including strings, lists, tuples, dictionaries, booleans, and more. What variables are and when to use them. How to perform mathematical operations using Python. How to capture input from a user. Ways to control the flow of your programs. The importance of white space in Python. How to organize your Python programs -- Learn what goes where. What modules are, when you should use them, and how to create your own. How to define and use functions. Important built-in Python functions that you'll use often. How to read from and write to files. The difference between binary and text files. Various ways of getting help and find Python documentation. Much more... Every single code example in the book is available to download, providing you with all the Python code you need at your fingertips! Scroll up, click the Buy Now With 1 Click button and get started learning Python today!

Introduction to Graph Theory


Richard J. Trudeau - 1994
    This book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. Includes exercises. 1976 edition.

The Code Book: The Science of Secrecy from Ancient Egypt to Quantum Cryptography


Simon Singh - 1999
    From Mary, Queen of Scots, trapped by her own code, to the Navajo Code Talkers who helped the Allies win World War II, to the incredible (and incredibly simple) logisitical breakthrough that made Internet commerce secure, The Code Book tells the story of the most powerful intellectual weapon ever known: secrecy.Throughout the text are clear technical and mathematical explanations, and portraits of the remarkable personalities who wrote and broke the world’s most difficult codes. Accessible, compelling, and remarkably far-reaching, this book will forever alter your view of history and what drives it. It will also make you wonder how private that e-mail you just sent really is.

The Nature of Code


Daniel Shiffman - 2012
    Readers will progress from building a basic physics engine to creating intelligent moving objects and complex systems, setting the foundation for further experiments in generative design. Subjects covered include forces, trigonometry, fractals, cellular automata, self-organization, and genetic algorithms. The book's examples are written in Processing, an open-source language and development environment built on top of the Java programming language. On the book's website (http://www.natureofcode.com), the examples run in the browser via Processing's JavaScript mode.

The Haskell Road to Logic, Maths and Programming


Kees Doets - 2004
    Haskell emerged in the last decade as a standard for lazy functional programming, a programming style where arguments are evaluated only when the value is actually needed. Haskell is a marvellous demonstration tool for logic and maths because its functional character allows implementations to remain very close to the concepts that get implemented, while the laziness permits smooth handling of infinite data structures.This book does not assume the reader to have previous experience with either programming or construction of formal proofs, but acquaintance with mathematical notation, at the level of secondary school mathematics is presumed. Everything one needs to know about mathematical reasoning or programming is explained as we go along. After proper digestion of the material in this book the reader will be able to write interesting programs, reason about their correctness, and document them in a clear fashion. The reader will also have learned how to set up mathematical proofs in a structured way, and how to read and digest mathematical proofs written by others.

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details

Hacker's Delight


Henry S. Warren Jr. - 2002
    Aiming to tell the dark secrets of computer arithmetic, this title is suitable for library developers, compiler writers, and lovers of elegant hacks.

Schaum's Outline of Discrete Mathematics (Schaum's Outline Series)


Seymour Lipschutz - 2009
    More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. You also get hundreds of examples, solved problems, and practice exercises to test your skills.This Schaum's Outline gives you:Practice problems with full explanations that reinforce knowledgeCoverage of the most up-to-date developments in your course fieldIn-depth review of practices and applicationsFully compatible with your classroom text, Schaum's highlights all the important facts you need to know. Use Schaum's to shorten your study time-and get your best test scores!Schaum's Outlines-Problem Solved.

Let Over Lambda


Doug Hoyte - 2008
    Starting with the fundamentals, it describes the most advanced features of the most advanced language: Common Lisp. Only the top percentile of programmers use lisp and if you can understand this book you are in the top percentile of lisp programmers. If you are looking for a dry coding manual that re-hashes common-sense techniques in whatever langue du jour, this book is not for you. This book is about pushing the boundaries of what we know about programming. While this book teaches useful skills that can help solve your programming problems today and now, it has also been designed to be entertaining and inspiring. If you have ever wondered what lisp or even programming itself is really about, this is the book you have been looking for.