Book picks similar to
Machine Learning: A Bayesian and Optimization Perspective by Sergios Theodoridis
machine-learning
data-science
ai-ml-dl
audio_wanted
Introductory Statistics
Prem S. Mann - 2006
The realistic content of its examples and exercises, the clarity and brevity of its presentation, and the soundness of its pedagogical approach have received the highest remarks from both students and instructors. Now this bestseller is available in a new 6th edition.
Quantum Computation and Quantum Information
Michael A. Nielsen - 2000
A wealth of accompanying figures and exercises illustrate and develop the material in more depth. They describe what a quantum computer is, how it can be used to solve problems faster than familiar "classical" computers, and the real-world implementation of quantum computers. Their book concludes with an explanation of how quantum states can be used to perform remarkable feats of communication, and of how it is possible to protect quantum states against the effects of noise.
Life 3.0: Being Human in the Age of Artificial Intelligence
Max Tegmark - 2017
It doesn't shy away from the full range of viewpoints or from the most controversial issues--from superintelligence to meaning, consciousness and the ultimate physical limits on life in the cosmos.
Introduction to Data Mining
Vipin Kumar - 2005
Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.
Feature Engineering for Machine Learning
Alice Zheng - 2018
With this practical book, you’ll learn techniques for extracting and transforming features—the numeric representations of raw data—into formats for machine-learning models. Each chapter guides you through a single data problem, such as how to represent text or image data. Together, these examples illustrate the main principles of feature engineering.Rather than simply teach these principles, authors Alice Zheng and Amanda Casari focus on practical application with exercises throughout the book. The closing chapter brings everything together by tackling a real-world, structured dataset with several feature-engineering techniques. Python packages including numpy, Pandas, Scikit-learn, and Matplotlib are used in code examples.
Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS
John K. Kruschke - 2010
Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884 0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke
Artificial Intelligence and Machine Learning for Business: A No-Nonsense Guide to Data Driven Technologies
Steven Finlay - 2021
They are being applied across many industries to increase profits, reduce costs, save lives and improve customer experiences. Consequently, organizations that understand these tools and know how to use them are benefiting at the expense of their rivals.Artificial Intelligence and Machine Learning for Business cuts through the hype and technical jargon that is often associated with these subjects. It delivers a simple and concise introduction for managers and business people. The focus is on practical application and how to work with technical specialists (data scientists) to maximize the benefits of these technologies.This revised and fully updated edition contains several new sections and chapters, covering a broader set of topics than before, but retains the no-nonsense style of the original.Steven Finlay is a data scientist and author with more than 20 years’ experience of developing practical, business focused, analytical solutions. He holds a PhD in management science and is an honorary research fellow at Lancaster University in the UK.
Statistical Inference
George Casella - 2001
Starting from the basics of probability, the authors develop the theory of statistical inference using techniques, definitions, and concepts that are statistical and are natural extensions and consequences of previous concepts. This book can be used for readers who have a solid mathematics background. It can also be used in a way that stresses the more practical uses of statistical theory, being more concerned with understanding basic statistical concepts and deriving reasonable statistical procedures for a variety of situations, and less concerned with formal optimality investigations.
Sin Boldly!: Dr. Dave's Guide To Acing The College Paper
David R. Williams - 1994
Jammed with sage advice, genuine encouragement, and surprising examples of how to write and how not to write, this book gives beginning writers and confident students alike an easy-to-follow roadmap for improving one of the most important skills for success. En route to Sin Boldly!-induced, A+ paper bliss, readers encounter such topics as:Choosing a Topic and Telling Your Story ("K.I.S.S.-Keep It Simple, Stupid")Literary Games (featuring "Francobabble for Freshman")Choosing a Voice ("Dissing the Prof")Grammatical Horrors ("A does not equal they")Common Mistakes ("Hopefully and Other Controversies") Fully revised and updated with new examples, quizzes, and tips, Sin Boldly! is not only a comprehensive guide, but also a fantastic, fun read for anyone who wants to write clearly and effectively.
Chaos: Making a New Science
James Gleick - 1987
From Edward Lorenz’s discovery of the Butterfly Effect, to Mitchell Feigenbaum’s calculation of a universal constant, to Benoit Mandelbrot’s concept of fractals, which created a new geometry of nature, Gleick’s engaging narrative focuses on the key figures whose genius converged to chart an innovative direction for science. In Chaos, Gleick makes the story of chaos theory not only fascinating but also accessible to beginners, and opens our eyes to a surprising new view of the universe.
Artificial Intelligence
Patrick Henry Winston - 1977
From the book, you learn why the field is important, both as a branch of engineering and as a science. If you are a computer scientist or an engineer, you will enjoy the book, because it provides a cornucopia of new ideas for representing knowledge, using knowledge, and building practical systems. If you are a psychologist, biologist, linguist, or philosopher, you will enjoy the book because it provides an exciting computational perspective on the mystery of intelligence. The Knowledge You Need This completely rewritten and updated edition of Artificial Intelligence reflects the revolutionary progress made since the previous edition was published. Part I is about representing knowledge and about reasoning methods that make use of knowledge. The material covered includes the semantic-net family of representations, describe and match, generate and test, means-ends analysis, problem reduction, basic search, optimal search, adversarial search, rule chaining, the rete algorithm, frame inheritance, topological sorting, constraint propagation, logic, truth
Modern Systems Analysis and Design
Jeffrey A. Hoffer - 1996
For advanced undergraduate and graduate courses in Systems Analysis and Design taught from a business perspective.Modern Systems Analysis and Design offers separate coverage of Object-Oriented and Structured material giving instructors flexibility to choose the best way to connect the material with students.
Introducing Artificial Intelligence: A Graphic Guide
Henry Brighton - 2007
But can machines really think? Is the mind just a complicated computer program? Introducing Artificial Intelligence focuses on the issues behind one of science's most difficult problems.
The Quants: How a New Breed of Math Whizzes Conquered Wall Street and Nearly Destroyed It
Scott Patterson - 2010
They were preparing to compete in a poker tournament with million-dollar stakes, but those numbers meant nothing to them. They were accustomed to risking billions. At the card table that night was Peter Muller, an eccentric, whip-smart whiz kid who’d studied theoretical mathematics at Princeton and now managed a fabulously successful hedge fund called PDT…when he wasn’t playing his keyboard for morning commuters on the New York subway. With him was Ken Griffin, who as an undergraduate trading convertible bonds out of his Harvard dorm room had outsmarted the Wall Street pros and made money in one of the worst bear markets of all time. Now he was the tough-as-nails head of Citadel Investment Group, one of the most powerful money machines on earth. There too were Cliff Asness, the sharp-tongued, mercurial founder of the hedge fund AQR, a man as famous for his computer-smashing rages as for his brilliance, and Boaz Weinstein, chess life-master and king of the credit default swap, who while juggling $30 billion worth of positions for Deutsche Bank found time for frequent visits to Las Vegas with the famed MIT card-counting team. On that night in 2006, these four men and their cohorts were the new kings of Wall Street. Muller, Griffin, Asness, and Weinstein were among the best and brightest of a new breed, the quants. Over the prior twenty years, this species of math whiz --technocrats who make billions not with gut calls or fundamental analysis but with formulas and high-speed computers-- had usurped the testosterone-fueled, kill-or-be-killed risk-takers who’d long been the alpha males the world’s largest casino. The quants believed that a dizzying, indecipherable-to-mere-mortals cocktail of differential calculus, quantum physics, and advanced geometry held the key to reaping riches from the financial markets. And they helped create a digitized money-trading machine that could shift billions around the globe with the click of a mouse. Few realized that night, though, that in creating this unprecedented machine, men like Muller, Griffin, Asness and Weinstein had sowed the seeds for history’s greatest financial disaster. Drawing on unprecedented access to these four number-crunching titans, The Quants tells the inside story of what they thought and felt in the days and weeks when they helplessly watched much of their net worth vaporize – and wondered just how their mind-bending formulas and genius-level IQ’s had led them so wrong, so fast. Had their years of success been dumb luck, fool’s gold, a good run that could come to an end on any given day? What if The Truth they sought -- the secret of the markets -- wasn’t knowable? Worse, what if there wasn’t any Truth? In The Quants, Scott Patterson tells the story not just of these men, but of Jim Simons, the reclusive founder of the most successful hedge fund in history; Aaron Brown, the quant who used his math skills to humiliate Wall Street’s old guard at their trademark game of Liar’s Poker, and years later found himself with a front-row seat to the rapid emergence of mortgage-backed securities; and gadflies and dissenters such as Paul Wilmott, Nassim Taleb, and Benoit Mandelbrot. With the immediacy of today’s NASDAQ close and the timeless power of a Greek tragedy, The Quants is at once a masterpiece of explanatory journalism, a gripping tale of ambition and hubris…and an ominous warning about Wall Street’s future.
Technology Matters: Questions to Live with
David E. Nye - 2006
This book addresses questions such as: can we define technology? Does technology shape us, or do we shape it? Is technology inevitable or unpredictable?